The Macroeconomics of Liquidity in Financial Intermediation^a

Davide Porcellacchia¹, Kevin Sheedy²

10th November 2023

¹European Central Bank, ²London School of Economics

^aThis paper represents our own views, not necessarily those of the European Central Bank or Eurosystem.

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage, demand more liquid assets, pay higher interest rates on deposits/bank debt.
- 2. Amplification and propagation of shocks through bank-funding spread.

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage, demand more liquid assets, pay higher interest rates on deposits/bank debt.
- 2. Amplification and propagation of shocks through bank-funding spread.

Macroeconomic effects of government-supplied liquid assets (e.g., treasuries)?

Model of endogenous runs on financial intermediaries

• within standard macro framework.

Research questions:

Implications of run risk for (1) bank behaviour and (2) macroeconomic outcomes?

- 1. Limit leverage, demand more liquid assets, pay higher interest rates on deposits/bank debt.
- 2. Amplification and propagation of shocks through bank-funding spread.

Macroeconomic effects of government-supplied liquid assets (e.g., treasuries)?

- It reduces banks' run risk \implies supports lending.
- How and how much liquidity should be supplied?

Motivating evidence

- 1. Large fluctuations in bank-funding spreads.
- 2. Bank-funding spreads positively correlated with liquidity premium (US data 1991-2023)
 - Bank-funding spread = 3M LIBOR 3M GC repo rate.
 - Liquidity premium = 3M GC repo rate 3M T-bill rate.

Motivating evidence

- 1. Large fluctuations in bank-funding spreads.
- 2. Bank-funding spreads positively correlated with liquidity premium (US data 1991-2023)
 - Bank-funding spread = 3M LIBOR 3M GC repo rate.
 - Liquidity premium = 3M GC repo rate 3M T-bill rate.

Motivating evidence

- 1. Large fluctuations in bank-funding spreads.
- 2. Bank-funding spreads positively correlated with liquidity premium (US data 1991-2023)
 - Bank-funding spread = 3M LIBOR 3M GC repo rate.
 - Liquidity premium = 3M GC repo rate 3M T-bill rate.

Literature

Macro-banking: Gertler and Kiyotaki (2010), Gertler and Karadi (2011), Brunnermeier and Sannikov (2014), Gertler, Kiyotaki, and Prestipino (2020), Karadi and Nakov (2021).

 \rightarrow different friction.

Banking theory: Diamond and Dybvig (1983), Goldstein and Pauzner (2005).

 \rightarrow in general equilibrium.

Demand for reserves/liquid assets: Poole (1968), Bianchi and Bigio (2022).

 $\rightarrow\,$ different micro-foundation.

Roadmap

- 1. Coordination game among bank creditors.
 - $\implies \text{ no-run condition}.$

- 2. Macro model
 - RBC: firms, households, and government.
 - Banks.
 - Policy.

- 3. Calibration and quantitative exercise.
- 4. Empirical evidence.

In each period,

- 1. banks with net worth N choose:
 - liquidity ratio m,
 - capital ratio n.
- 2. Households choose whether or not to hold the deposits.

Because of illiquid-asset liquidation cost $1 - \lambda$, bank is bankrupt if too few households hold deposits.

In each period,

- 1. banks with net worth N choose:
 - liquidity ratio m,
 - capital ratio n.
- 2. Households choose whether or not to hold the deposits.

Because of illiquid-asset liquidation cost $1 - \lambda$, bank is bankrupt if too few households hold deposits.

Coordination friction: departure from common knowledge about bank fundamentals.

In each period,

- 1. banks with net worth N choose:
 - liquidity ratio m,
 - capital ratio n.
- 2. Households choose whether or not to hold the deposits.

Because of illiquid-asset liquidation cost $1 - \lambda$, bank is bankrupt if too few households hold deposits.

Coordination friction: departure from common knowledge about bank fundamentals.

No-run condition:

$$\underbrace{\frac{j-\rho}{1+\rho}}_{\text{Funding spread}} \geq \underbrace{\theta}_{\text{LGD}} \underbrace{\left(\frac{1-n}{\lambda+(1-\lambda)m}-1\right)}_{\text{Bank fragility}}$$
(1)

Illustrate with RBC model, but can also embed in full NK DSGE model.

- 1. Households save in bank debt, supply labour and consume.
- 2. Competitive firms rent physical capital from banks and hire labour.
- 3. Government supplies liquid assets (government bonds) with lump-sum taxes/transfers.

Bank behaviour

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Key trade-off: Return vs funding spread.

Bank behaviour

Bank maximizes PDV(dividends) s.t. BCs, no-run condition and minimum dividend payout.

Key trade-off: Return vs funding spread.

Liquidity choice:

Illiquid-asset holdings:

$$\mathcal{K} = \frac{\mathcal{N} + \frac{1}{\lambda} \left[1 - \lambda - \sqrt{1 - \frac{\lambda}{\theta} \left(\frac{r - \rho}{1 + \rho} + \theta \right)} \right] \mathcal{M}}{\sqrt{1 - \frac{\lambda}{\theta} \left(\frac{r - \rho}{1 + \rho} + \theta \right)}}$$

where $(r-\rho)/(1+\rho)$ is the credit spread.

(3)

(2)

Policy

• Real effects of liquidity supply.

Optimal policy sets spreads equal to zero, but

- implementation requires $M \to +\infty$.
- it eliminates seigniorage, and
- steady-state bank net worth is zero.

Policy

• Real effects of liquidity supply.

Optimal policy sets spreads equal to zero, but

- implementation requires $M \to +\infty$.
- it eliminates seigniorage, and
- steady-state bank net worth is zero.

More modest policy recommendation is to stabilize spreads.

- Respond to shocks with liquidity supply.
- $\rightarrow\,$ Mitigate amplification of shocks.

Calibration: targets and parameters

• A model period is one month. • Data 1986–2008.

			Description
Description	Notation	Value	Bank-asset liquidit
Real Treasury Bill rate	i	1.9%	Loss given bank d
Real return on bank equity	q	7.6%	Minimum dividend
Credit spread	r — i	2.1%	Subjective discour
Liquidity premium	$\rho - i$	0.24%	Elasticity of intert
	,		Frisch elasticity of
Bank capital ratio	п	8.1%	Capital elasticity of

Description	Notation	Value	
Bank-asset liquidity relative to T-bills	λ	0.632	-
Loss given bank default	θ	0.003	
Minimum dividend distribution	γ	0.0063	
Subjective discount factor	β	0.998	
Elasticity of intertemporal substitution	σ	1	
Frisch elasticity of labour supply	ψ	3	
Capital elasticity of output	α	1/3	
Depreciation rate	δ	0.0063	10/15

One-off 5% capital destruction shock

Increase in supply of liquid assets

12/15

OLS with daily data (2005-22): spreads regressed on Treasuries

- Controls:
 - 1. 30 lags (treasuries, bank-funding spread, liquidity premium, 3M GC repo rate, 10-year treasury yield, corporate-bond yield, TGA balance, S&P 500, S&P financials, VIX).
 - 2. dummies (weekday, day, month, NBER recession, linear trend).

Empirics: does liquidity reduce spreads?

OLS with daily data (2005-22): spreads regressed on Treasuries

- Controls:
 - 1. 30 lags (treasuries, bank-funding spread, liquidity premium, 3M GC repo rate, 10-year treasury yield, corporate-bond yield, TGA balance, S&P 500, S&P financials, VIX).
 - 2. dummies (weekday, day, month, NBER recession, linear trend).

- Identification:
 - 1. Supply of treasuries does not respond to endogenous variables *within a day*.
 - 2. Daily supply of treasuries is known in advance by mkt participants.
 - 3. Lags capture persistent response of treasuries to past economic events.

Empirics: effects of Treasury issuance

$$y_t - \bar{y}(lags_t, dummies_t) = \beta \left[M_t - \bar{M}(lags_t, dummies_t) \right] + \epsilon_t$$

Empirics: effects of Treasury issuance

$$y_t - \bar{y}(lags_t, dummies_t) = \beta \left[M_t - \bar{M}(lags_t, dummies_t) \right] + \epsilon_t$$

	Funding spread	Liquidity premium	Risk-free rate
log Treasuries	-1.7***	-1.7***	1.3***
	(0.4)	(0.5)	(0.4)
R-squared	99%	91%	100%

Note 1: Bootstrapped standard errors are reported in parentheses.

Note 2: Interest rates are measured in basis points.

Note 3: Funding spread is 3M LIBOR - 3M repo rate. Liquidity premium is 3M repo rate - 3M T-bill rate. The risk-free rate is the 3M repo rate.

Conclusion

Macro model + bank fragility.

Coordination game among bank creditors:

- 1. Fragility is costly because funding costs $\uparrow.$
- 2. Leverage \downarrow and liquidity $\uparrow \implies$ fragility $\downarrow.$

Macro model:

- 1. Demand for liquid assets.
- 2. Amplification and propagation of shocks via spreads.
- 3. Liquidity supports bank lending and economic activity.

Quantitative exercise: After capital-destruction shock, GDP falls 40% more and more persistently.

Empirical evidence shows supply of liquidity reduces bank-funding spread.