

Reserve Demand, Interest Rate Control, and Quantitative Tightening

9 November 2023

Authors: David Lopez-Salido and Annette Vissing-Jorgensen (Federal Reserve Board) Discussant: Stefano Corradin (ECB)

- The views expressed here are the authors' and do not necessarily reflect those of the ECB or the Eurosystem
- Thank you to colleagues in ECB Research, Market Operations and Monetary Policy directorates for discussions on the topic and on Lopez-Salido&Vissing-Jorgensen (LSVJ)'s paper

1 Discussion of LSVJ's paper

2 Application of LSVJ to euro area (with Maria Viola (ECB/DGR))

Reserve demand - LSVJ framework (I)

- **Novelty:** Derive the reserve demand from a bank optimisation problem where deposits are a **key variable**
- **Intuition:** Reserves earn an interest **but also** provide a convenience yield due to transactions cost saving: when faced with deposits outflows the bank does not need to sell securities and/or loans
- Advantage: LSVJ provide parameters for a wide range of US reserves so you can recover the whole demand function
- **Policy:** LSVJ assess how much quantitative tightening (QT) is feasible (reduce reserves but keep control over short-term rates)

Reserve demand - LSVJ framework (II)

- Convenience yield defined as benefit v(R,D) (or -cost(R,D))
 - $\circ~$ More reserves (R) reduce price of reserves $\rightarrow v_R'>0$
 - $\circ~$ More deposits (D) increase price of reserves $\rightarrow v_D^\prime < 0$
- The (inverse) demand for reserves is

$$\underbrace{FFR}_{\text{pal cost of borrowing}} = \underbrace{IOR + v'_R(R, D) - \phi}_{\text{integral}} \tag{1}$$

Marginal cost of borrowing in Federal funds market Marginal benefit of holding reserves

- $\circ~\mbox{FFR}$ is the federal fund rate
- $\circ~$ IOR is the interest on reserves paid by Fed
- $\circ \ v_R'(R,D)$ is marginal liquidity benefit from additional reserves
- $\circ~\phi$ is the marginal cost of regulation (penalises balance-sheet expansion)
- No upper bound rate: the discount window rate (as in Poole's models)
- Potentially bank can raise reserves via repo funding and discount window but these channels are muted

Reserve demand - LSVJ framework (III)

Key ingredient: functional form of v'_R(R, D)
 LSVJ's choice is

$$v'_{R}(R,D) = d + b\log(R) + c\log(D)$$
 (2)

$$v'_R(R/D) = d + b\log(R/D)$$
(3)

liquidity benefits double if both reserves and deposits double

- Money demand (Lucas (2000,E), Ireland (2009,AER))
- US Treasury convenience yield (Krishnamurthy&Vissing-Jorgensen (2012,JPE))
- LSVJ estimate (plug eq.(2) into eq.(1)) $FFR - IOR = a + b \log(R + ONRRP) + c \log(D) + u$ (4)
 - \circ "regulation" ϕ is absorbed by the intercept $a~(=d-\phi)$
 - reserves are instrumented with the sum of reserves and take-up at the overnight reverse repo (ONRRP) facility
 - What is the advantage of (1)? Model fitting

From theory to data (2009M1-2022M10)

• Reserve demand is unstable (lhs panel)

• Model fit is "very tight" when you control for deposits (rhs panel)

Estimates (I)

- **Comment 1**: the implied elasticity of (log) deposits is 1.79 → the price of reserves is more sensitive to (log) deposits than to (log) reserves
 - Why should we expect such large sensitivity to deposits (deposits are larger than reserves)? Implications for QT exercise?
 - $\circ~$ More work and discussion on the functional form of v_R^\prime
- **Comment 2**: Is the relation unstable or has the relation more than one regime?
 - Afonso, Giannone, La Spada&Williams (2023) discuss three regimes over the same sample
 - Different approach: provide *local* estimates using daily time-series variation in the quantity of reserves (see also *liquidity effect* literature as Hamilton (1997,AER), Carpenter&Demiralp (2006,JMCB))

Estimates (II) - Afonso et al. (2023)

- Reserves over bank assets (lhs panel):
 - **1** From 2010 to 2014: expansion
 - **2** From 2015 to mid-March 2020: contraction
 - **3** From mid-March 2020 to December 2021: expansion
- The location of the reserve demand has shifted over time (rhs panel) ... but are deposits the only demand curve shifter? other factors?
- Lagos&Navarro (2023) propose a quantitative theory-based approach to assess how variation in key parameters shifts reserve demand

• Comment 3: Regulation

- $\circ~$ Liquidity regulation is modelled in reduced form and as a linear ${\rm cost}$ that penalises balance-sheet expansion
- But banks may have **precautionary reserve motives** to comply with liquidity regulation
- But banks appear to have a preference for meeting Liquidity Coverage Ratio (LCR) requirement partly with reserves rather than with other High-quality liquid assets (HQLA)

- 1 Discussion of LSVJ's paper
- **2** Application of LSVJ to euro area (with Maria Viola (ECB/DGR))

Euro area reserve demand: three regimes

1 Jan 1999 - Oct 2008: neutral allotment with low and stable excess reserves

- ② Oct 2008 Feb 2015: fixed rate full allotment with moderate excess reserves → liquidity endogenously determined by banks' needs via LTROs (Garcia-de-Andoain, Heider, Hoerova & Manganelli (2016,JFI))
- (3) March 2015 QE and TLTROs injected large amounts of excess reserves \rightarrow liquidity (partially) exogenously driven by outright purchases

Reserves and deposits in euro area

• Reserves and deposits strongly co-move since Mach 2015

Estimates for euro area

LHS variable:	Eonia	(€STER) - DFR;	monthly observations
---------------	-------	----------------	----------------------

	2008-2015		2015 onward	
	(1)	(2)	(3)	(4)
log(Reserves)	-0.12^{***}	-0.26^{***}	-0.04^{***}	-0.03^{***}
log(Deposits)		3.38^{***}		-0.15^{***}
Dummy €STER			-0.08^{***}	-0.07^{***}
Obs.	77	77	94	94
R^2	0.59	0.84	0.97	0.98

- Positive and statistically significant sign for deposits only in 2008-2015
- The reserve elasticity is affected by accounting for deposits in 2008-2015

Euro area institutional framework is different and we should take into account

- The two-tier system for remunerating excess reserve holdings (Sep 2019 Sep 2022)
- The reserves elasticities may vary when the analysis is run at country level
- Banks receive reserves when they borrow from the Eurosystem through its refinancing operations (such as TLTROs)

 $\circ~$ But it is difficult to find a good instrument for Eurosystem borrowing

- Must-read paper!
- Thank you!