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1 Introduction
How is monetary policy transmitted domestically and internationally? The standard in-
ternational macroeconomics model with perfect capital mobility and floating exchange
rates (e.g., Gali (2015)) delivers sharp answers. These follow from the Expectations
Hypothesis (EH) and the Uncovered Interest Parity (UIP), which hold in the standard
model up to constant risk premia. Because of EH, the yield curve in each country de-
pends only on expectations of the domestic short rate, which is controlled by the domestic
central bank. Hence, Quantitative Easing (QE) purchases of long-maturity bonds by the
central bank, keeping short rates unchanged, have no effect on the yield curve. More-
over, each country’s yield curve is fully insulated from other countries’ monetary policy.
Insulation arises because according to UIP, short-rate differentials across countries are
absorbed into the exchange rate, whose expected movements compensate investors for
these differentials. The insulation result is a slightly broader statement of the well-known
Friedman-Obstfeld-Taylor Trilemma: with perfect capital mobility, a floating exchange
rate provides monetary policy autonomy, not just in setting short rates, but also in shap-
ing the domestic yield curve.1

Four broad empirical observations cast doubt on the validity of the standard model.
First, a large literature starting with Bilson (1981) and Fama (1984) documents strong
violations of UIP: currency carry trade (CCT) strategies that borrow in currencies with
low short rates and invest in currencies with high short rates earn abnormally high ex-
pected returns. Second, a similarly large literature starting with Fama and Bliss (1987)
and Campbell and Shiller (1991) documents strong violations of EH: bond carry trade
(BCT) strategies that borrow in maturities with low interest rates and invest in maturi-
ties with high interest rates earn abnormally high expected returns. Third, risk premia in
currencies and bonds are connected. For example, Chernov and Creal (2020) and Lloyd
and Marin (2020) find that yield curve slope differentials predict the CCT’s profitabil-
ity, and Lustig, Stathopoulos, and Verdelhan (2019) find that the CCT’s profitability
declines when that trade is carried out with long-maturity rather than short-maturity
bonds. Fourth, a growing body of evidence surveyed in Bhattarai and Neely (2018) sug-
gests that central banks’ QE purchases had a significant impact not only on domestic
yields but also on exchange rates and foreign yields.2

In this paper we develop a two-country model in which currency and bond markets are
populated by different investor clienteles, and segmentation is partly overcome by global
arbitrageurs with limited capital. Our model accounts for the predictability patterns of
currency and bond returns documented empirically. It also delivers sharply different im-

1Obstfeld, Shambaugh, and Taylor (2010) provide a modern articulation of the Trilemma.
2See also Bauer and Neely (2014), Neely (2015), Curcuru, De Pooter, and Eckerd (2018), Curcuru,

Kamin, Li, and Rodriguez (2018), Fratzscher, Lo Duca, and Straub (2018) and Dedola, Georgiadis, Grab,
and Mehl (2020).

1



plications about monetary policy transmission than the standard model. QE purchases
of long-maturity bonds in our model lower domestic and foreign bond yields, and de-
preciate the currency, consistent with empirical evidence. Conventional monetary policy
is transmitted to domestic and international bond yields as well, but its international
transmission is weaker than for unconventional policy. A common theme in our analysis
is that when accounting for realistic frictions in financial markets, floating exchange rates
provide limited insulation, at odds with the Trilemma.

Our model, presented in Section 2, is set in continuous time and infinite horizon. In
each of the two countries, home and foreign, a central bank sets the short rate exoge-
nously. There are three types of investors: currency traders, bond investors, and global
arbitrageurs. Currency traders express an exogenous demand for the foreign currency,
which can depend on the real exchange rate. Examples of such traders are exporters and
importers. Bond investors form clienteles, each of which expresses a demand for a bond of
a specific country and maturity. The demand can depend on the bond’s price. Examples
of such clienteles are pension funds, holding long-maturity bonds to hedge their liabilities,
or money-market funds, whose mandates require them to hold short-maturity bonds. De-
mands for currency and bonds are hit by shocks, which generate additional variation to
short-rate shocks. Arbitrageurs can trade the currency and bonds of both countries. They
maximize mean-variance utility over instantaneous changes in wealth. Their risk aversion
parameter can capture in reduced form capital or Value-at-Risk constraints. Examples of
global arbitrageurs are macro hedge funds and global banks.

Section 3 derives the equilibrium, as a solution to a scalar non-linear system. The
exchange rate and bond prices are log affine functions of five state variables: the two
short rates, a currency demand factor, and two bond demand factors. When arbitrageur
risk aversion is zero, UIP and EH hold, and monetary policy transmission is as in the
standard model. When instead risk aversion is non-zero, UIP and EH are violated. The
violations of UIP and EH are tightly linked because arbitrageurs are the marginal investors
in all markets.

Section 4 specializes the model to the case where there are no recurring demand
shocks and short rates are independent across countries. In that case, we can show key
mechanisms and results analytically. Consider the transmission of conventional monetary
policy. Following a cut to the home short rate, arbitrageurs find it attractive to enter
into the CCT, by borrowing in the home currency and investing in the foreign currency.
If the demand by currency traders is price-elastic, then both the exchange rate, defined
as the price of foreign currency in terms of home currency, and arbitrageurs’ holdings of
foreign currency rise in equilibrium. The expected return of the CCT rises as well, as
arbitrageurs must be compensated for the risk of entering into that trade. The rise in the
CCT’s expected return attenuates the transmission of monetary policy to the exchange
rate, which appreciates less than implied by UIP. This attenuation effect parallels Gabaix
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and Maggiori (2015), who model exchange-rate dynamics without a yield curve.
A similar attenuation effect arises in the home bond market. The short-rate cut

prompts arbitrageurs to also enter into the home BCT, by borrowing in the home short
rate and investing in long-maturity home bonds. If the demand by home bond investors
is price-elastic, then both home bond prices and arbitrageurs’ holdings of home bonds rise
in equilibrium. The expected return of the home BCT rises as well, as arbitrageurs must
be compensated for the risk of entering into that trade. The rise in the BCT’s expected
return attenuates the transmission of monetary policy to domestic bond yields, which
drop less than implied by EH. This attenuation effect parallels Vayanos and Vila (2021),
who model yield-curve dynamics in a closed economy.

In addition to the above attenuation effects, our model of joint exchange-rate and
yield-curve dynamics delivers a propagation effect of conventional policy to foreign bond
yields. Propagation occurs through global risk management by arbitrageurs. By entering
into the CCT in response to the home short-rate cut, arbitrageurs become more exposed
to the risk that the foreign short rate drops and the foreign currency depreciates. Foreign
bonds provide a natural hedge for that risk because their price rises when the foreign
short rate drops. Hence, arbitrageurs increase their demand for foreign bonds, causing
foreign bond yields to drop.

Our model delivers additional new predictions on the transmission of unconventional
policies such as QE and foreign exchange intervention. Following QE purchases of home
bonds by the home central bank, prices of home bonds rise. Arbitrageurs accommodate
the increased demand for home bonds by holding fewer such bonds. This renders them
less exposed to a rise in the home short rate and more willing to hold foreign currency,
which depreciates when the home short rate rises. Arbitrageurs also become more willing
to hold foreign bonds, which hedge the foreign currency position against a drop in the
foreign short rate. Hence, QE purchases depreciate the home currency and lower foreign
bond yields. A similar argument implies that sterilized purchases of foreign currency by
the home or foreign central bank lower home bond yields and raise foreign ones.

Section 5 complements the analytical results with a quantitative exercise based on
the full model with all five state variables. We take the two countries to be the US and
the Eurozone, and estimate the model parameters by comparing empirical and model-
implied moments of exchange rates, bond yields and trading volume. Our estimates of
bond demand elasticity are in the same ballpark as those in Krishnamurthy and Vissing-
Jorgensen (2012) and Koijen and Yogo (2020). The estimated model matches the evidence
in Fama and Bliss (1987, FB) and Campbell and Shiller (1991, CS) on violations of EH,
with the caveat that the model-implied FB coefficients do not increase with maturity and
the CS coefficients do not decrease. The model also matches the evidence in Bilson (1981)
and Fama (1984) on violations of UIP, and the related evidence in Lustig, Stathopoulos,
and Verdelhan (2019, LSV) that the CCT’s profitability declines when that trade is carried
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out with long-maturity bonds. The intuition in the case of LSV is that because the BCT is
profitable, long-maturity bonds in high short-rate countries are expected to underperform
relative to the short rate. The model also matches the evidence in Chernov and Creal
(2020) and Lloyd and Marin (2020) that the CCT is less profitable when the slope of the
yield curve in the high short-rate country is higher than in the low short-rate country.
The intuition is that a high slope indicates low bond demand, which causes the currency
to appreciate and its future expected return to decline.

In our estimated model, unconventional monetary policy has significant effects on
bond yields, and these are transmitted almost one-to-one across countries. QE purchases
in either country equal to 10% of GDP with a half-life of seven years reduce the home and
foreign intermediate-maturity yields by about 50 basis points. By contrast, conventional
policy has pronounced effects on domestic but not on foreign yields. The difference
arises partly because positive correlation in short rates across countries magnifies the
international transmission of unconventional policy and dampens that of conventional
policy. In particular, in response to QE at home, arbitrageurs reduce their positions in
home bonds, and rebuild their exposure to short-rate risk by buying positively correlated
foreign bonds. Our results suggest that flexible exchange rates have better insulation
properties under conventional than unconventional monetary policy.

Our paper is part of a recent literature that emphasizes the role of segmented mar-
kets, financial intermediaries and limits of arbitrage for macroeconomics. In Gabaix and
Maggiori (2015), households in each of two countries can only invest in a domestic bond,
while intermediaries can invest in the bonds of both countries. Because intermediary po-
sitions are constrained, UIP fails to hold, and exchange rates are influenced by financial
flows as in an earlier literature on portfolio balance (e.g., Kouri (1976) and Driskill and
McCafferty (1980)). In Itskhoki and Mukhin (2021), the exchange rate is determined by
households who can only invest in a domestic bond, risk-averse intermediaries who can
overcome this segmentation, and noise traders. Shocks to noise-trader demand generate
UIP deviations, and account for more than 90% of exchange rate fluctuations but for
only a small fraction of output fluctuations. Other frictional models of exchange rates
with financial flows and noise traders include Jeanne and Rose (2002), Evans and Lyons
(2002), Hau and Rey (2006), Bacchetta and van Wincoop (2010, 2021) and Bruno and
Shin (2015). These papers focus on the determination of the exchange rate and do not
model the yield curve.

Vayanos and Vila (2021, VV) develop a closed-economy model of the yield curve
with preferred-habitat investors who can invest in specific maturities and risk-averse arbi-
trageurs. Our model extends VV to two countries, adds the currency market, and assumes
global arbitrageurs. Ray (2019) and Droste, Gorodnichenko, and Ray (2021) embed VV
into a New Keynesian model and study the transmission of conventional and unconven-
tional monetary policy to the domestic economy. Closest to our work is Greenwood,
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Hanson, Stein, and Sunderam (2020), who develop independently a model of currency
and bond markets with preferred-habitat investors and global arbitrageurs. They derive
results analogous to those that we present in Section 4 and explore additionally Covered
Interest Parity violations and arbitrageur heterogeneity, but do not estimate their model
or quantify its effects. They assume only two bond maturities, while we assume a con-
tinuum. This makes our model more suitable for quantification and for examining how
different policies affect the shape of the domestic and foreign yield curves.

Our paper is also related to a recent literature that examines how convenience yields
affect exchange rates and interest rates. Engel and Wu (2018) and Jiang, Krishnamurthy,
and Lustig (2021a) construct convenience yields by comparing home government bonds
to synthetic counterparts constructed by buying foreign government bonds and swapping
the foreign into the home currency. They find that the home currency appreciates when
the home convenience yield rises. Jiang, Krishnamurthy, and Lustig (2021b) show that
investor preferences for safe dollar assets underlie the global financial cycle (Rey, 2013)
whereby US monetary policy transmits to the rest of the world. Our model can capture
investor preferences for currencies and bonds of a specific country through the demand
factors, and can quantify the effects of each type of demand.

Finally, our paper is related to DSGE models of monetary policy transmission. Closest
to our work is the two-country model of Alpanda and Kabaca (2020). They find that QE
purchases have large international spillover effects, which exceed those of conventional
monetary policy. Portfolio balance effects in their model arise from bond holdings entering
directly in agents’ utility functions, while we partly endogenize them through mean-
variance optimization by arbitrageurs.3

2 Model
Time is continuous and goes from zero to infinity. There are two countries, Home (H)
and Foreign (F ). We define the exchange rate as the units of home currency that one unit
of foreign currency can buy, and denote it by et at time t. An increase in et corresponds
to a home currency depreciation.

In each country j = H,F , a continuum of zero-coupon government bonds can be
traded. The bonds’ maturities lie in the interval (0, T ), where T can be finite or infinite.
The country-j bond with maturity τ at time t pays off one unit of country j’s currency at
time t+ τ . We denote by P

(τ)
jt the time-t price of that bond, expressed in units of country

j’s currency, and by y
(τ)
jt the bond’s yield. The yield is the spot rate for maturity τ , and

3See also Andres, Lopez-Salido, and Nelson (2004) and Chen, Curdia, and Ferrero (2012), for closed-
economy DSGE models of QE in which agents face transaction costs and position limits when trading
bonds.
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is related to the price through

y
(τ)
jt = −

log
(
P

(τ)
jt

)
τ

. (2.1)

The country-j and time-t short rate ijt is the limit of the yield y
(τ)
jt when τ goes to zero.

We take ijt as exogenous, and describe its dynamics later in this section (eq. (2.8)). An
exogenous ijt can be interpreted as the result of actions that the central bank in country
j takes when targeting the short nominal rate by elastically supplying liquidity.

There are three types of agents: arbitrageurs, currency traders, and bond investors.
Arbitrageurs are competitive and maximize a mean-variance objective over instantaneous
changes in wealth. We express their wealth in units of the home currency, thus assuming
that the home currency is the riskless asset for them. We allow arbitrage to be global or
segmented. When arbitrage is global, arbitrageurs can invest in the currency and bonds
of both countries. When instead arbitrage is segmented, arbitrageurs can invest in the
currency of the home country (the riskless asset), and in a single additional asset class:
foreign currency for some arbitrageurs, home bonds for others, and foreign bonds for the
remainder. Our main analysis and results concern global arbitrage. We use segmented
arbitrage as a benchmark.

In the case of global arbitrage, we denote by Wt the arbitrageurs’ time-t wealth, by
WHt and WFt their net position in home and foreign-currency instruments, respectively,
and by X

(τ)
Ht dτ and X

(τ)
Ft dτ their position in the home and foreign bonds with maturities

in [τ, τ + dτ ], respectively, all expressed in units of the home currency.
The arbitrageurs’ budget constraint is

Wt+dt =

(
WHt −

∫ T

0

X
(τ)
Ht dτ

)
(1 + iHtdt) +

∫ T

0

X
(τ)
Ht

P
(τ−dt)
H,t+dt

P
(τ)
Ht

dτ

+

(
WFt −

∫ T

0

X
(τ)
Ft dτ

)
(1 + iFtdt)

et+dt

et
+

∫ T

0

X
(τ)
Ft

P
(τ−dt)
F,t+dt et+dt

P
(τ)
Ft et

dτ. (2.2)

The first term in (2.2) corresponds to a position in the home short rate, the second term
to a position in home bonds, the third term to a position in the foreign short rate, and
the fourth term to a position in foreign bonds. In the third term, WFt −

∫ T

0
X

(τ)
Ft dτ units

of the home currency are converted at time t to units of the foreign currency by dividing
by et. They earn the foreign short rate between time t and t+ dt, and are converted back
at time t+ dt to units of the home currency by multiplying by et+dt. In the fourth term,
X

(τ)
Ft units of the home currency are converted at time t to units of the foreign currency

by dividing by et, and then to units of the foreign bond with maturity τ by dividing by
P

(τ)
Ft , the price of the bond in foreign currency. They are converted back at time t+ dt to

units of the home currency by multiplying by P
(τ−dt)
F,t+dt et+dt.

6



Subtracting Wt = WHt +WFt from both sides of (2.2) and rearranging, we find

dWt =WtiHtdt+WFt

(
det
et

+ (iFt − iHt)dt

)
+

∫ T

0

X
(τ)
Ht

(
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt

)
dτ +

∫ T

0

X
(τ)
Ft

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et

− iFtdt

)
dτ.

(2.3)

If arbitrageurs invest all their wealth in the home short rate, then the instantaneous
change dWt in their wealth is WtiHtdt, the first term in (2.3). Arbitrageurs can earn
additional returns by investing in foreign currency, home bonds, and foreign bonds. The
additional return from foreign currency derives from the currency carry trade (CCT) and
corresponds to the second term in (2.3). The additional returns from home and foreign
bonds derive from the home and foreign bond carry trades (BCT) and correspond to the
third and fourth terms in (2.3). We return to the CCT and BCT in the next section.

The optimization problem of a global arbitrageur is

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

[
Et(dWt)−

a

2
Vart(dWt)

]
. (2.4)

The coefficient a ≥ 0 characterizes the arbitrageur’s risk aversion. It can capture in
reduced form capital or Value-at-Risk constraints. By possibly redefining a, we assume
that global arbitrageurs are in measure one.

In the case of segmented arbitrage, the budget constraint of any given arbitrageur is
derived from (2.3) by setting two of the terms to zero. For an arbitrageur who can invest
only in foreign currency, the third and fourth terms are zero (X(τ)

Ht = X
(τ)
Ft = 0); for an

arbitrageur who can invest only in home bonds, the second and fourth terms are zero
(WFt = X

(τ)
Ft = 0); and for an arbitrageur who can invest only in foreign bonds, with

a zero net position in foreign-currency instruments, the second and third terms are zero
(WFt = X

(τ)
Ht = 0). The optimization problem is derived from (2.4) by restricting the

choice variables accordingly. We denote by ae, aH , and aF , respectively, the risk-aversion
coefficient of an arbitrageur who can invest in foreign currency, home bonds, and foreign
bonds. By possibly redefining (ae, aH , aF ), we assume that each type of arbitrageur is in
measure one.

Currency traders generate a downward-sloping demand for foreign currency as a func-
tion of the exchange rate et, as in Hau and Rey (2006). These agents can be interpreted
as exporters and importers, or as central banks intervening in currency markets. For
example, when et is low, the flow demand for foreign currency arising from exporters and
importers due to expenditure switching may increase, as in Gabaix and Maggiori (2015),
and this may push up the stock demand for foreign currency. Similarly, when et is low,
the central bank in the home country may want to increase its stock of foreign currency,
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perhaps to stabilize the currency. For tractability, we assume that the demand of cur-
rency traders, expressed in units of the home currency, is affine and decreasing in the
logarithm of the exchange rate:

Zet = −αe log(et)− (ζet + θeγt), (2.5)

where αe ≥ 0 is a slope coefficient, ζet is a deterministic term, θe is a constant, and γt is a
demand risk factor. We describe the dynamics of γt and motivate the deterministic term
ζet later in this section.

The demand (2.5) for foreign currency is expressed in the spot market. Most of the
trading volume in currency markets, however, originates in forwards and swaps (BIS,
2019). We show in Appendix A that under global arbitrage, Covered Interest Parity
(CIP) holds and the demand for foreign-currency forwards and swaps can be expressed as a
combination of demands for spot currency and for domestic and foreign bonds. Therefore,
our model can accommodate foreign-currency forwards and swaps by redefining currency
and bond demands.

Bond investors have preferences (“habitats”) for specific countries and maturities. For
example, pension funds in the home country prefer long-maturity home bonds because
these match their pension liabilities, which are long term and denominated in home cur-
rency. At the other end of the maturity spectrum, home money-market funds are required
by their mandates to hold short-maturity home bonds. For tractability, we assume that
preferences take an extreme form, where investors demand only the bond closest to their
preferred characteristics. That is, investors with preferences for country j and maturity
τ at time t hold a position Z

(τ)
jt in the country-j bond with maturity τ and hold no other

bond. We assume that maturity preferences cover the interval (0, T ), and investors with
preferences for country j and maturities in [τ, τ + dτ ] are in measure dτ . We express the
position Z

(τ)
jt in units of the home currency, and assume that it is affine and decreasing

in the logarithm of the bond price:

Z
(τ)
jt = −αj(τ) log

(
P

(τ)
jt

)
− β

(τ)
jt . (2.6)

The slope coefficient αj(τ) ≥ 0 is constant over time but can depend on country j and
maturity τ . The intercept coefficient β(τ)

jt can depend on t, τ , and j. With a slight abuse of
language, we refer to αj(τ) and β

(τ)
jt as demand slope and demand intercept, respectively.

The demand intercept β
(τ)
jt takes the form

β
(τ)
jt = ζj(τ) + θj(τ)βjt, (2.7)

where (ζj(τ), θj(τ)) are constant over time but can depend on country j and maturity τ ,
and βjt is independent of τ but can depend on country j and time t. We refer to βjt as
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a demand risk factor. Vayanos and Vila (2021) provide an optimizing foundation for the
demand specification (2.6)-(2.7) in a setting where investors form overlapping generations
consuming at the end of their life and are infinitely risk-averse.

The 5× 1 vector qt ≡ (iHt, iFt, γt, βHt, βFt)
⊤ follows the process

dqt = Γ(q̄ − qt)dt+ ΣdBt, (2.8)

where q̄ is a constant 5 × 1 vector, (Γ,Σ) are constant 5 × 5 matrices, Bt is a 5 × 1

vector (BiHt, BiF t, Bγt, BβHt, BβFt)
⊤ of independent Brownian motions, and ⊤ denotes

transpose. Equation (2.8) nests the case where the factors (iHt, iFt, γt, βHt, βFt) are mutu-
ally independent, and the case where they are correlated. Independence arises when the
matrices (Γ,Σ) are diagonal. When instead Σ is non-diagonal, shocks to the factors are
correlated, and when Γ is non-diagonal, the drift (instantaneous expected change) of each
factor depends on all other factors. We assume that the eigenvalues of Γ have positive real
parts so that qt is stationary. Equation (2.8) implies that the long-run mean of a station-
ary qt is q̄. We set the long-run means of the demand factors to zero (q̄3 = q̄4 = q̄5 = 0).
This is without loss of generality since we can redefine ζet and {ζj(τ)}j=H,F to include
a non-zero long-run mean. We set the supply of foreign currency and home and foreign
bonds to zero by redefining investor demand to be net of supply.

Key to the tractability of our model is that all demand functions are expressed in terms
of the same numeraire, which is the riskless asset for arbitrageurs. The numeraire can be
the currency of one of the two countries, and we take it to be the home currency. One
limiting feature of this assumption is that the home currency must be the riskless asset
for all arbitrageurs, even foreign ones. Our assumption also precludes that exchange-rate
movements, holding foreign bond yields constant, affect foreign bond demand in home
currency terms.

Our model can be given both a nominal and a real interpretation. Our presentation so
far focuses on the nominal interpretation: the exchange rate is the price of one currency
relative to the other, bonds pay in currency units, preferences of arbitrageurs concern their
nominal wealth, the demand of currency traders is a function of the nominal exchange
rate, and preferences of bond investors concern their nominal consumption. A difficulty
with the nominal interpretation is that the demand of currency traders such as exporters
and importers is better viewed as a function of the real, rather than the nominal, exchange
rate. To make the nominal interpretation compatible with a real currency demand, we
can replace the nominal exchange rate et in (3.1) by the real exchange rate. This amounts
to keeping et inside the logarithm and adding αe(log(pFt) − log(pHt)) to ζet, where pjt

is the price level in country j = H,F . Hence, under the nominal interpretation, we
can take ζet to be αe(log(pFt) − log(pHt)). Our formal analysis in subsequent sections
can accommodate this interpretation as long as we ignore inflation risk, i.e., assume that
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log(pFt)− log(pHt) is deterministic.
An alternative interpretation of our model is real: the exchange rate et is the real

exchange rate defined as the price of goods in one country relative to the other, bonds
pay in units of goods with a real price P

(τ)
jt , preferences of arbitrageurs concern their real

wealth, the demand of currency traders depends on the real exchange rate, and preferences
of bond investors concern their real consumption. Under the real interpretation, we can
take ζet to be a constant, ζe.

In what follows, we present the nominal interpretation of the model in the special case
where the inflation rate is constant in each country: ζet = ζe + αe(πF − πH)t, where πj is
the constant inflation rate in country j and ζe is a constant.

3 Equilibrium
In this section we characterize the equilibrium with global arbitrage. We start by con-
jecturing a functional form for the equilibrium exchange rate and bond yields. Using
that functional form, we next simplify the arbitrageurs’ objective and derive their first-
order conditions. We finally combine the first-order conditions with market clearing, and
confirm that equilibrium prices are as conjectured.

We conjecture that the equilibrium exchange rate and bond yields are log-affine func-
tions of qt. That is, there exist six scalars ({Aije}j=H,F , Aγe, {Aβje}j=H,F , Ce) and twelve
functions ({Aijj′(τ)}j,j′=H,F , {Aγj(τ)}j=H,F , {Aβjj′(τ)}j,j′=H,F , {Cj(τ)}j=H,F ) that depend
only on τ , such that

log et = −
[
A⊤

e qt + Ce + (πF − πH)t
]
, (3.1)

logP
(τ)
jt = −

[
Aj(τ)

⊤qt + Cj(τ)
]
, (3.2)

where

Ae ≡ (AiHe,−AiFe, Aγe, AβHe,−AβFe)
⊤, (3.3)

Aj(τ) ≡ (AiHj(τ), AiF j(τ), Aγj(τ), AβHj(τ), AβFj(τ))
⊤. (3.4)

Applying Ito’s Lemma to (3.1) and using (2.8), we find

det
et

= µetdt− A⊤
e ΣdBt, (3.5)

where

µet ≡ A⊤
e Γ(qt − q̄)− (πF − πH) +

1

2
A⊤

e ΣΣ
⊤Ae. (3.6)
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Applying Ito’s Lemma to (3.2) for j = H and using (2.8), we find

dP
(τ)
Ht

P
(τ)
Ht

= µ
(τ)
Htdt− AH(τ)

⊤ΣdBt, (3.7)

where

µ
(τ)
Ht ≡ A′

H(τ)
⊤qt + C ′

H(τ) + AH(τ)
⊤Γ(qt − q̄) +

1

2
AH(τ)

⊤ΣΣ⊤AH(τ). (3.8)

Likewise, (3.2) for j = F and (3.1) together imply

d(P
(τ)
Ft et)

P
(τ)
Ft et

− det
et

= µ
(τ)
Ft dt− AF (τ)

⊤ΣdBt, (3.9)

where

µ
(τ)
Ft ≡ A′

F (τ)
⊤qt +C ′

F (τ) +AF (τ)
⊤Γ(qt − q̄) +

1

2
AF (τ)

⊤ΣΣ⊤ (AF (τ) + 2Ae) . (3.10)

To derive the arbitrageurs’ first-order conditions, we substitute (3.5), (3.7) and (3.9)
into the budget constraint (2.3) and write the optimization problem (2.4) as

max
WFt,{X

(τ)
jt }τ∈(0,T ),j=H,F

[
WFt (µet + iFt − iHt) +

∑
j=H,F

∫ T

0

X
(τ)
jt

(
µ
(τ)
jt − ijt

)
dτ

−a

2

(
WFtAe +

∑
j=H,F

∫ T

0

X
(τ)
jt Aj(τ)dτ

)⊤

ΣΣ⊤

(
WFtAe +

∑
j=H,F

∫ T

0

X
(τ)
jt Aj(τ)dτ

) .

(3.11)

The first-order condition with respect to WFt is

µet + iFt − iHt = A⊤
e λt, (3.12)

and the first-order condition with respect to X
(τ)
jt is

µ
(τ)
jt − ijt = Aj(τ)

⊤λt, (3.13)

where j = H,F , λt ≡ (λiHt, λiF t, λβHt, λβFt, λγt)
⊤ and

λt ≡ aΣΣ⊤

(
WFtAe +

∑
j=H,F

∫ T

0

X
(τ)
jt Aj(τ)dτ

)
. (3.14)

The first-order condition (3.12) describes the arbitrageurs’ risk-return trade-off when
investing in the currency carry trade (CCT). We term CCT the trade of borrowing short-
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term in the home country, exchanging the borrowed amount in the foreign currency,
investing it short-term in the foreign country, and exchanging it back in the home cur-
rency.4 The CCT’s return is det

et
+ (iFt − iHt)dt, equal to the return on foreign currency

plus that on the foreign-home short-rate differential.
If arbitrageurs invest an extra unit of home currency in the CCT, then their annualized

expected return increases by µet + iFt − iHt. This is the left-hand side of (4.2), and we
refer to it as the CCT’s expected return (omitting that it is annualized). The right-hand
side of (4.2) is the increase in the arbitrageurs’ portfolio risk, times their risk-aversion
coefficient a. The increase in portfolio risk is equal to the covariance between the return
on the CCT and the return on the arbitrageurs’ portfolio. The covariance is the product
of the vectors that describe the sensitivity of each return to the risk factors, times the
factors’ covariance matrix ΣΣ⊤. The sensitivity of the CCT’s return to the factors is Ae,
and the sensitivity of the portfolio return is WFtAe +

∑
j=H,F

∫ T

0
X

(τ)
jt Aj(τ)dτ .

The first-order condition (3.13) describes the arbitrageurs’ risk-return trade-off when
investing in the bond carry trade (BCT) in country j. We term BCT in country j the
trade of borrowing short-term in that country and investing the borrowed amount in
that country’s bonds.5 The return on the BCT in the home country and for maturity
τ is dP

(τ)
Ht

P
(τ)
Ht

− iHtdt, equal to the return on the home bond with maturity τ minus that
on the home short rate. The return on the BCT in the foreign country, expressed in
home-currency terms, is d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et

− iFtdt. This is equal to the return on the foreign
bond with maturity τ , expressed in home-currency terms, minus that on foreign currency,
minus that on the foreign short rate.

If arbitrageurs invest an extra unit of home currency in the BCT for country j and
maturity τ , then their annualized expected return increases by µ

(τ)
jt − ijt. This is the

left-hand side of (4.3), and we refer to it as the BCT’s expected return. The right-hand
side of (4.3) is the increase in the arbitrageurs’ portfolio risk, times their risk-aversion
coefficient a. The increase in portfolio risk is equal to the covariance between the return
on the BCT in country j and for maturity τ , and the return on the arbitrageurs’ portfolio.

The first-order conditions (3.12) and (3.13) can be interpreted in the language of no-
arbitrage models. No-arbitrage in continuous time requires that there exist prices specific
to each risk factor and common across assets, such that the expected return of any zero-
cost portfolio is equal to the sum across factors of the portfolio’s sensitivity to each factor
times the factor’s price. The factor prices are the elements of the vector λt.

We next combine the first-order conditions with market clearing. Clearing in the
4For simplicity, we deviate from market terminology, according to which the CCT borrows in the

currency with the low interest rate.
5For simplicity, we deviate from market terminology, according to which the BCT borrows at maturities

with a low interest rate.
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currency market requires

WFt + Zet = 0. (3.15)

Clearing in the market for country j bonds with maturity τ requires

X
(τ)
jt + Z

(τ)
jt = 0. (3.16)

Using (3.15) and (3.16), we can write λt as

λt = aΣΣ⊤

(
−ZetAe −

∑
j=H,F

∫ T

0

Z
(τ)
jt Aj(τ)dτ

)
. (3.17)

Substituting the demands Zet and {Z(τ)
jt }j=H,F from (2.6) and (2.5), respectively, we can

write (3.17) as

λt = aΣΣ⊤

(
(αe log(et) + ζe + αe(πF − πH)t+ θeγt)Ae

+
∑

j=H,F

∫ T

0

(
αj(τ) log

(
P

(τ)
jt

)
+ ζj(τ) + θj(τ)βjt

)
Aj(τ)dτ

)

= aΣΣ⊤

((
ζe + θeγt − αe

(
A⊤

e qt + Ce

))
Ae

+
∑

j=H,F

∫ T

0

(
ζj(τ) + θj(τ)βjt − αj(τ)

(
Aj(τ)

⊤qt + Cj(τ)
))

Aj(τ)dτ

)
, (3.18)

where the second step follows from (3.1) and (3.2). Substituting λt from (3.18) and µet

from (3.6) into (3.12), we find an equation that are affine in qt. We find two additional
affine equations by substituting λt from (3.18), µ(τ)

Ht from (3.8) and µ
(τ)
Ft from (3.10) into

(3.12) for j = H,F . Identifying linear and constant terms yields a system of scalar
equations and ODEs, which can be solved for the equilibrium exchange rate and bond
yields. To state these equations, we denote by (EiH ,EiF ,Eγ,EβH ,EβF ) the five 5×1 vectors
that correspond to the five consecutive columns of the 5× 5 identity matrix.

Proposition 3.1. When arbitrage is global, the exchange rate et is given by (3.1) and
bond prices P

(τ)
jt in country j = H,F are given by (3.2), with (Ae, Ce) solving

MAe − EiH + EiF = 0, (3.19)

− A⊤
e Γq̄ − (πF − πH) +

1

2
A⊤

e ΣΣ
⊤Ae = A⊤

e λC , (3.20)
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and (Aj(τ), Cj(τ)) solving

A′
j(τ) +MAj(τ)− Eij = 0, (3.21)

C ′
j(τ)− Aj(τ)

⊤Γq̄ +
1

2
Aj(τ)

⊤ΣΣ⊤ (Aj(τ) + 2Ae1{j=F}
)
= Aj(τ)

⊤λC , (3.22)

with the initial conditions Aj(0) = Cj(0) = 0, and

M ≡ Γ⊤ − a

(
(θeEγ − αeAe)A

⊤
e

+
∑

j=H,F

∫ T

0

(θj(τ)Eβj − αj(τ)Aj(τ))Aj(τ)
⊤dτ

)
ΣΣ⊤, (3.23)

λC ≡ aΣΣ⊤

(
(ζe − αeCe)Ae +

∑
j=H,F

∫ T

0

(ζj(τ)− αj(τ)Cj(τ))Aj(τ)dτ

)
. (3.24)

Equation (3.21) is a linear ODE system in the 5× 1 vector Aj(τ). We solve it taking
the 5 × 5 matrix M as given. Taking M as given, we also solve the linear scalar system
(3.19) in Ae. We then substitute (Ae, {Aj(τ)}j=H,F ) in (3.23) and derive M as solution
to a system of nonlinear scalar equations. In the general case, the system consists of
25 equations, and we solve it numerically as described in Appendix C. In the case where
there is no demand risk, the system’s dimensionality drops substantially and we can derive
analytical results, as shown in Section 4.

Our model yields Uncovered Interest Parity (UIP) and the Expectations Hypothesis
(EH) as a special case. Both properties hold when arbitrageurs are risk-neutral (a = 0).
Setting a = 0 in (3.12) yields µet = iHt − iFt, as under UIP. Setting a = 0 in (3.13) yields
µ
(τ)
jt ≡ ijt, as under EH. Since for a = 0, (3.23) implies M = Γ⊤ and (3.24) implies λC = 0,

(3.19) implies Ae = (Γ−1)
⊤
(EiH − EiF ) and (3.20) implies

iH − πH = iF − πF +
1

2
(EiH − EiF )

⊤ Γ−1ΣΣ⊤ (Γ−1
)⊤

(EiH − EiF ) , (3.25)

where ij denotes the unconditional mean of the nominal short rate in country j. According
to (3.25), the unconditional mean ij − πj of the real interest rate in country j is equal
across home and foreign, up to a convexity adjustment (the final term in (3.25)). Equality
of average real rates is a restriction on model parameters. It must hold for a = 0 because
of the stationarity of the real exchange rate, which is implicit in the conjectured form
(3.1). Indeed, if average real rates differed across countries and arbitrageurs were risk
neutral, then the real exchange rate would appreciate on average or depreciate on average
forever, violating stationarity.

When arbitrageurs are risk averse, a stationary equilibrium can exist even when av-
erage real rates differ across countries and even in the limit when risk aversion goes to
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zero. This is because any difference in average real rates is absorbed in equilibrium by an
adjustment in currency risk premia. The currency of the country with a higher average
real rate is permanently stronger and earns a positive premium. Arbitrageurs have a
high demand for that currency, through their position in the CCT, and earn the positive
premium. Currency traders have offsetting low demand if their demand is price-elastic
(αe > 0). In the limit when arbitrageurs’ risk aversion a goes to zero, risk premia remain
non-zero and arbitrageurs’ position in the CCT becomes arbitrarily large. Corollary 3.1
summarizes these results.

Corollary 3.1. Suppose that arbitrage is global.
• When arbitrageurs are risk-neutral (a = 0), UIP and EH hold: the expected return

on foreign currency is µUIP
et ≡ iHt − iFt, and the expected return on country-j bonds

is µ
(τ)EH
jt ≡ ijt. Stationarity of the real exchange rate, as per the conjecture (3.1),

requires (3.25).
• When arbitrageurs’ risk aversion goes to zero (a → 0), the expected return on foreign

currency goes to µUIP
et and the expected return on country-j bonds goes to µ

(τ)EH
jt

only when (3.25) holds. Stationarity of the real exchange rate does not require (3.25)
if αe > 0.

4 No Demand Risk
In this section we study the case where the demand for foreign currency and home and
foreign bonds does not vary stochastically: the demand factors (γt, βHt, βFt) are equal
to their mean of zero in steady state. For simplicity we also assume that the home and
foreign short rates (iHt, iFt) are independent and that one-off shocks to the demand factors
do not affect the short rates or other demand factors. Our assumptions amount to taking
the matrices (Γ,Σ) in (2.8) to be diagonal and to setting Σ3,3 = Σ4,4 = Σ5,5 = 0. Setting
(Γ1,1,Γ2,2, q̄1, q̄2,Σ1,1,Σ2,2) ≡ (κiH , κiF , iH , iF , σiH , σiF ), we can write the dynamics of the
country-j short rate as

dijt = κij(ij − ijt)dt+ σijdBijt. (4.1)

The simplifying assumptions in this section allow us to study the equilibrium analytically.
We begin by analyzing segmented arbitrage and then return to global arbitrage.

4.1 Segmented Arbitrage

When arbitrage is segmented, the first-order condition of the arbitrageurs in each market
reflects their own risk aversion and portfolio composition. The first-order condition (3.12)
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in the currency market becomes

µet + iFt − iHt = A⊤
e λet, (4.2)

where Ae ≡ (AiHe,−AiFe) and λet ≡ aeWFt(σ
2
iHAiHe,−σ2

iFAiFe). Relative to (3.12),
the definition of Ae is modified to include the CCT’s sensitivity to the short rates only
because these are the sole risk factors. The definition of λt is also modified and includes
the subscript e since when arbitrage is segmented, factor prices differ across bond and
currency markets. Factor prices λet in the currency market reflect the risk aversion ae of
currency arbitrageurs and their position WFt in foreign currency. They do not depend on
positions in home or foreign bonds since currency arbitrageurs do not hold such positions.

The first-order condition (3.13) in the country-j bond market becomes

µ
(τ)
jt − ijt = Aj(τ)λjt, (4.3)

where Aj(τ) ≡ Aijj(τ) and λjt ≡ ajσ
2
ij

∫ T

0
X

(τ)
jt Aijj(τ)dτ . Relative to (3.13), the definition

of Ae is modified to include the BCT’s sensitivity to the country-j short rate only because
with segmented arbitrage this is the only risk factor for country-j bonds. The definition
of λt is also modified and includes the subscript j. Factor prices λjt in the country-j bond
market reflect the risk aversion aj of country-j bond arbitrageurs and their positions
Xjt(τ) in these bonds.

Solving for equilibrium in the currency market reduces to a nonlinear scalar equation
(Proposition B.1 in Appendix B). The same is true for equilibrium in the country-j bond
market (Proposition B.2 in Appendix B). Using our characterization of equilibrium we
next derive analytically equilibrium properties.

4.1.1 Short-Rate Shocks and Carry Trades

Proposition 4.1. Suppose that arbitrage is segmented. Following a drop in the home
short rate or a rise in the foreign short rate, the foreign currency appreciates (AiHe > 0,
AiFe > 0). When additionally currency arbitrageurs are risk-averse (ae > 0) and the
demand of currency traders is price-elastic (αe > 0),

• The foreign currency does not appreciate all the way to the level implied by UIP:
AiHe < AUIP

iHe , AiFe < AUIP
iFe .

• The expected return of the CCT rises: ∂(µet+iFt−iHt)
∂iHt

< 0 and ∂(µet+iFt−iHt)
∂iFt

> 0.

When the home short rate drops or the foreign short rate rises, the foreign currency
appreciates. These movements are in the direction implied by UIP. The foreign currency
does not appreciate all the way to the value implied by UIP, however. To explain the
mechanism, we begin by assuming that the exchange rate remains the same as before
the shock. The drop in iHt or rise in iFt render the CCT more profitable, raising its
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expected return µet + iFt − iHt and inciting arbitrageurs to increase their holdings WFt of
the foreign currency. This puts upward pressure on the exchange rate. When the demand
by currency traders is price-elastic, their holdings Zet decrease as the foreign currency
appreciates and those of currency arbitrageurs WFt increase in equilibrium. Risk-averse
arbitrageurs, however, do not trade all the way to the point where et reaches its UIP value.
Instead, in a spirit similar to Gabaix and Maggiori (2015), the CCT’s expected return
µet + iFt − iHt remains higher than before the shock to compensate arbitrageurs for the
risk generated by their larger foreign-currency position. The exchange rate adjusts all the
way to its UIP value when currency arbitrageurs are risk-neutral or when the demand by
currency traders is price-inelastic. In the latter case this is because arbitrageurs’ activity
causes prices to rise up to the point where there is no change in WFt.

Proposition 4.1 implies that the difference between the foreign and the home short
rate predicts positively the CCT’s future return. This is consistent with the evidence in
Bilson (1981) and Fama (1984), who document that following an increase in the foreign-
minus-home short-rate differential, the expected return on the foreign currency typically
increases. Moreover, even in samples where it decreases, it does so less than implied by
UIP. Hence, the CCT becomes more profitable.

Proposition 4.2. Suppose that arbitrage is segmented. Following a drop in the short rate
in country j, bond yields drop in that country (Aijj(τ) > 0) and do not change in the
other country (Aij′j(τ) = 0 for j′ ̸= j). When additionally bond arbitrageurs in country j

are risk-averse (aj > 0) and the demand of bond investors in that country is price-elastic
(αj(τ) > 0):

• Bond yields do not drop all the way to the value implied by the EH: Aijj(τ) < AEH
ijj (τ).

• The expected return of the BCT rises:
∂
(
µ
(τ)
jt −ijt

)
∂ijt

< 0.

When the short rate in country j drops, bond prices in that country rise (and bond
yields drop) because of a standard discounting effect. Prices do not rise all the way to
the value implied by the EH, however. To explain the mechanism, we begin by assuming
that bond prices remain the same as before the shock. The drop in the short rate renders
the BCT in country j more profitable, raising its expected return µ

(τ)
jt − ijt and inciting

arbitrageurs in country j to increase their bond holdings X(τ)
jt . This puts upward pressure

on bond prices P (τ)
jt . When the demand by bond investors in country j is price-elastic, their

holdings Z
(τ)
jt decrease as bond prices rise and those of bond arbitrageurs X

(τ)
jt increase

in equilibrium. Risk-averse arbitrageurs, however, do not trade all the way to the point
where bond prices reach their EH value. Instead, as Vayanos and Vila (2021) show for
a closed economy, the BCT’s expected return µ

(τ)
jt − ijt remains higher than before the

shock to compensate arbitrageurs for the risk generated by their larger bond position.
Bond prices adjust all the way to their EH value when bond arbitrageurs in country j are
risk-neutral or when the demand by bond investors in country j is price-inelastic.
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Proposition 4.2 implies that the slope of the term structure in country j predicts
positively the BCT’s future return in that country. Indeed, slope and future return vary
over time only because of the country j short rate ijt, and are both high when ijt is low. A
positive relationship between the slope of the term structure and the BCT’s future return
is documented in Fama and Bliss (1987), but is inconsistent with the EH according to
which the BCT’s expected return should be zero. Campbell and Shiller (1991) document a
related violation of the EH: the slope of the term structure in country j predicts negatively
changes in future long rates in that country.

4.1.2 Demand Shocks

We next determine how the exchange rate and bond yields respond to changes in the de-
mand for foreign currency and bonds. Since we assume no demand risk in this section, we
take the demand changes to be unanticipated and one-off. Demand changes by currency
traders correspond to shocks to the demand factor γt. Demand changes by bond investors
in country j correspond to shocks to the demand factor βjt. Following the shocks, the de-
mand factors revert deterministically to their mean of zero. The effects of unanticipated
and one-off shocks are the limit of those under anticipated and recurring shocks (Section
5) when the shocks’ variance goes to zero.

Without loss of generality, we take θe to be positive, which means that an increase in
γe corresponds to a drop in demand for foreign currency. We take θj(τ) to be positive for
all τ , which means that an increase in βjt corresponds to a drop in demand for the bonds
of country j.

Proposition 4.3. Suppose that arbitrage is segmented, θe > 0 and θj(τ) > 0 for all τ .
• An unanticipated one-off drop in currency traders’ demand for foreign currency

(increase in γe) causes the foreign currency to depreciate if currency traders are
risk-averse (ae > 0). It has no effect on bond yields.

• An unanticipated one-off drop in investor demand for the bonds of country j (increase
in βjt) raises bond yields in country j if bond arbitrageurs in that country are risk-
averse (aj > 0). It has no effect on bond yields in the other country and on the
exchange rate.

When arbitrage is segmented, changes to the demand for an asset class—foreign cur-
rency, home bonds, foreign bonds—affect that asset class only. When, for example, the
demand for bonds in country j drops, these bonds become cheaper and their yields in-
crease, while foreign currency and bonds in the other country are unaffected.

4.1.3 Monetary Policy Transmission

We next summarize the implications of the segmented-arbitrage model for the domestic
and international transmission of monetary policy. Consider first conventional monetary
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easing at home, modelled as an unanticipated cut to the home short rate iHt by the central
bank. The rate cut propagates along the home term structure, although less than implied
by EH (Proposition 4.2). Moreover, the home currency depreciates, although less than
implied by UIP (Proposition 4.1). Propagation is imperfect (compared to EH and UIP)
because bond and foreign-currency arbitrageurs must be compensated for the change in
their portfolio holdings. The cut to the home short rate does not affect the foreign term
structure (Proposition 4.2), and hence has no effect on foreign monetary conditions. In
that sense, the model with segmented arbitrage features full insulation.

Consider next quantitative easing (QE) at home, consisting of purchases of home bonds
by the central bank and modelled as an unanticipated drop in the demand factor βHt. QE
lowers home bond yields (Proposition 4.3). It does not effect the foreign term structure,
and hence has no effect on foreign monetary conditions. Once again, the model with
segmented arbitrage features full insulation. An additional implication of the insulation
present in the segmented-arbitrage model is that QE transmits differently to the domestic
economy than conventional monetary easing. Indeed, while the exchange rate drops in
response to conventional easing, it remains unaffected with QE (Proposition 4.3).

Even though the segmented-arbitrage model delivers deviations from UIP and the EH,
its implications for policy spillovers are similar to the standard model. This similarity
masks differences in the underlying mechanisms. In the segmented-arbitrage model, the
insulation of the term structure arises entirely from the assumption that the home and
foreign bond markets are segmented. In Trilemma terms, insulation is due to restrictions
on capital flows. As we show in the next section, when arbitrageurs are active in all
markets, insulation breaks down.

4.2 Global Arbitrage

The first-order conditions are (3.12) and (3.13), with Ae ≡ (AiHe,−AiFe), Aj(τ) ≡
(AiHj(τ), AiF j(τ)) and λt ≡ (λiHt, λiF t) with

λijt ≡ aσ2
ij

(
WFtAije(−1)1{j=F} +

∑
j′=H,F

∫ T

0

X
(τ)
j′t Aijj′(τ)dτ

)
. (4.4)

The definitions of Ae and Aj(τ) include the CCT’s and BCT’s sensitivity to only the short
rates because these are the only risk factors. Solving for equilibrium reduces to a system
of three nonlinear scalar equations (Proposition B.3 in Appendix B).

4.2.1 Short-Rate Shocks and Carry Trades

Proposition 4.4. Suppose that arbitrage is global.
• The effects of short-rate shocks on the exchange rate and on the CCT’s expected
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return have the same properties as in Proposition 4.1, except that the price-elasticity
condition can hold for currency traders or bond investors (αe > 0 or αj(τ) > 0).

• The effects of shocks to the country-j short rate ijt on bond yields in country j and
on the BCT’s expected return have the same properties as in Proposition 4.2, except
that the price-elasticity condition can hold for currency traders or bond investors
(αe > 0 or αj(τ) > 0).

• When arbitrageurs are risk-averse (a > 0) and the demand by currency traders is
price-elastic (αe > 0), a drop in ijt causes bond yields in country j′ ̸= j to drop

(Aj′j(τ) > 0) and the BCT’s expected return to drop (
∂
(
µ
(τ)

j′t−ij′t

)
∂ijt

> 0).
• The effect of ijt on bond yields is smaller in country j′ than in country j (Ajj(τ) >

Aj′j(τ)).

Bond yields respond to shocks differently under global and segmented arbitrage. Under
segmented arbitrage, a shock to the short rate ijt in country j affects bond yields in that
country only. By contrast, under global arbitrage, and provided that aαe > 0, the shock
affects bond yields in both countries, even though the short rate ij′t in country j′ ̸= j

does not change. When ijt drops, bond yields in both countries drop.
Short-rate shocks are transmitted across countries because global arbitrageurs engage

in the CCT and use the bond market to hedge. Recall that under both segmented and
global arbitrage, a drop in the home short rate iHt raises the profitability of the CCT,
making it more attractive to arbitrageurs. When the demand by currency traders is
price-elastic, the arbitrageurs’ equilibrium investment in the CCT increases. Because
arbitrageurs hold more foreign-currency instruments (higher WFt), they become more
exposed to the risk that the foreign short rate iFt drops and the foreign currency depre-
ciates. Global arbitrageurs hedge that risk by buying foreign bonds because their price
rises when iFt drops. The arbitrageurs’ activity pushes the prices of foreign bonds up and
their yields down.

An additional consequence of hedging by global arbitrageurs is greater under-reaction
of the exchange rate and bond yields to short rates. When iHt drops, arbitrageurs invest
more in the CCT and in the home BCT. Each of these trades exposes them to a rise in
iHt. Hence, global arbitrageurs are less eager than segmented arbitrageurs to buy foreign
currency and home bonds following a drop in iHt, and the expected return of the CCT
and the home BCT increase more than under segmented arbitrage. In particular, when
the demand by currency traders is inelastic and that by bond investors is elastic, a drop in
iHt raises the CCT’s expected return under global arbitrage but leaves it unaffected under
segmented arbitrage. Likewise, when the demand by home bond investors is price-inelastic
and that by currency traders is elastic, a drop in iHt raises the home BCT’s expected return
under global arbitrage but leaves it unaffected under segmented arbitrage.

We next turn to variants of the CCT studied in the empirical literature. One variant
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is a hybrid CCT in which the trading horizon is short but the trading instruments are
long-term. Borrowing in the home country and investing in the foreign country is done
with the respective τ -year bonds, and the positions are held for a short horizon dt. The
return of the hybrid CCT in home-currency units is

d(P
(τ)
Ft et)

P
(τ)
Ft et

− dP
(τ)
Ht

P
(τ)
Ht

=

(
det
et

+ (iFt − iHt)dt

)

+

(
d(P

(τ)
Ft et)

P
(τ)
Ft et

− det
et

− iFtdt

)
−

(
dP

(τ)
Ht

P
(τ)
Ht

− iHtdt

)
. (4.5)

Hence, the hybrid CCT can be viewed as a combination of (i) the basic CCT, (ii) a long
position in the foreign BCT, and (iii) a short position in the home BCT.

A second variant is a long-horizon CCT, in which borrowing in the home country and
investing in the foreign country is done with the respective τ -year bonds, and the positions
are held until the bonds’ maturity. The return of the long-horizon CCT in home-currency
units and log terms is
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(4.6)

where the equality follows from (2.1). Hence, the long-horizon CCT can be viewed as the
combination of (i) a sequence of basic CCTs, (ii) a long position in a long-horizon foreign
BCT, and (iii) a short position in a long-horizon home BCT. The long-horizon BCT in
country j involves buying bonds in country j and financing that position by borrowing
short-term and rolling over. Proposition 4.5 characterizes the annualized expected returns
of the hybrid CCT and the long-horizon CCT.

Proposition 4.5. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0),
and the demand by currency traders or by bond investors is price-elastic (αe > 0 or
αj(τ) > 0).

• The hybrid CCT’s and the long-horizon CCT’s expected returns rise following a
drop in the home short rate iHt or a rise in the foreign short rate iFt, provided that
the maturity τ of the bonds involved in these trades lies in an interval (0, τ ∗). The
threshold τ ∗ is infinite when countries are symmetric.

• The sensitivity of the hybrid CCT’s expected return to (iHt, iFt) is smaller than for
the basic CCT. The sensitivity of the long-horizon CCT’s expected return to (iHt, iFt)

is smaller than for the corresponding sequence of basic CCTs.
• When maturity τ goes to infinity, regardless of whether (a, αe, α(τ)) are non-zero:
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– The expected returns of the hybrid CCT and long-horizon CCT go to zero.
– The difference in real yields across countries goes to zero.

Short-rate shocks move the expected returns of the hybrid CCT and the long-horizon
CCT in the same direction as for the basic CCT, except possibly when the maturity
τ of the bonds involved in these trades is long. The effects of short-rate shocks on the
hybrid CCT and the long-horizon CCT are smaller than for the corresponding basic CCTs
because the shocks’ effects through the BCTs work in the opposite direction. Consider,
for example, a drop in the home short rate. Proposition 4.4 implies that the expected
return of the basic CCT increases, but so does the expected return of the home BCT,
which enters as a short position in the hybrid CCT and the long-horizon CCT.

When the maturity τ of the bonds involved in the hybrid CCT and the long-horizon
CCT goes to infinity, the effects of short-rate shocks through the BCTs offset fully those
through the basic CCT. As a consequence, short-rate shocks have no effect on the hybrid
CCT’s and the long-horizon CCT’s expected returns. The expected returns of both trades
go to zero. These results are consistent with Lustig, Stathopoulos, and Verdelhan (2019),
who find that that short rates lose their predictive power for the return of the hybrid CCT,
while they predict strongly the return of the basic CCT. They are also consistent with
Chinn and Meredith (2004), who find that UIP cannot be rejected over long horizons.

The annualized expected returns of the hybrid CCT and the long-horizon CCT go
to zero when maturity τ goes to infinity because with a stationary real exchange rate,
risk remains bounded when τ increases. Consider a trader who enters into the long-
horizon CCT at time t. Per unit of home currency invested, the trader pays the fixed
amount

(
1 + y

(τ)
Ht

)τ
in home currency and receives the fixed amount

(
1 + y

(τ)
Ft

)τ
in foreign

currency at time t+ τ . The trader faces only exchange-rate risk. Since with a stationary
real exchange rate that risk remains bounded when τ goes to infinity, the difference in real
interest rates across countries must go to zero: if it did not, then the long-horizon CCT (or
its reverse) would offer the trader a near-riskless profit for large τ . For the same reason,
a stationary real exchange rate implies that the expected return of the long-horizon CCT
goes to zero. The expected return of the hybrid CCT goes to zero as well because that
trade is identical to the long-horizon CCT except that it is unwound at time t+ dt.

4.2.2 Demand Shocks

Under global arbitrage, shocks to the demand for an asset class (foreign currency, home
bonds, foreign bonds) affect all other assets. This is in contrast to segmented arbitrage,
where only the asset class for which demand changes is affected (Proposition 4.3).

Proposition 4.6. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0),
the functions (αH(τ), αF (τ)) are non-increasing, and θe > 0. A drop in currency traders’
demand for foreign currency (increase in γt):
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• Causes the foreign currency to depreciate.
• Raises bond yields in the home country.
• Lowers bond yields in the foreign country.

A drop in currency traders’ demand for foreign currency causes it to depreciate, as
in Proposition 4.3. Additionally, hedging by global arbitrageurs causes home bond prices
to drop and foreign bond prices to rise. Indeed, arbitrageurs accommodate the drop in
demand for foreign currency by holding more of it. Hence, they become more exposed
to a rise in the home short rate iHt and to a decline in the foreign short rate iFt. This
makes them less willing to hold home bonds, which drop in price when iHt rises, and more
willing to hold foreign bonds, which rise in price when iFt drops.

Proposition 4.7. Suppose that arbitrage is global, arbitrageurs are risk-averse (a > 0),
the functions (αH(τ), αF (τ)) are non-increasing, and the function θj(τ) is positive. A
drop in investor demand for the bonds of country j (increase in βjt):

• Raises bond yields in country j.
• Raises bond yields in country j′ ̸= j when the demand by currency traders is price-

elastic (αe > 0).
• Causes the foreign currency to depreciate if j = H, and to appreciate if j = F .

A drop in investor demand for home bonds depresses their prices, as in Proposition
4.3. Additionally, hedging by global arbitrageurs causes prices for foreign bonds to drop
and the foreign currency to depreciate. Indeed, arbitrageurs accommodate the drop in
demand for home bonds by holding more such bonds. Hence, they become more exposed
to a rise in the home short rate iHt. This makes them less willing to hold foreign currency,
which depreciates when iHt rises. If the demand by currency traders is price-elastic, then
arbitrageurs hold less foreign currency in equilibrium. Hence, they become less exposed
to a drop in the foreign short rate iFt and less willing to hold foreign bonds, which rise in
price when iFt drops. A drop in demand for foreign bonds has symmetric effects.

4.2.3 Monetary Policy Transmission

We next summarize the implications of the global-arbitrage model for the domestic and
international transmission of monetary policy. Consider first conventional monetary eas-
ing at home, modelled as an unanticipated cut to the home short rate iHt. The rate
cut propagates imperfectly along the home term structure and causes the home currency
to depreciate (Proposition 4.4). These effects are as in the case of segmented arbitrage.
Unlike in that case, however, yields on foreign bonds decrease, even though the foreign
short rate remains unchanged. Hence, foreign monetary conditions are affected by domes-
tic monetary conditions, and so the global arbitrage model features imperfect insulation.
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Insulation is imperfect in the sense that foreign monetary policy does not fully control
the foreign yield curve and thus the monetary impulse to the foreign economy.

Consider next QE purchases of home bonds, modelled as an unanticipated drop in the
demand factor βHt. This policy decreases home bond yields (Proposition 4.7), as in the
case of segmented arbitrage. Unlike in that case, however, yields on foreign bonds decrease
and the home currency depreciates. Hence, foreign monetary conditions are affected by
domestic monetary conditions. Once again, the model with global arbitrage features
imperfect insulation. For both conventional and unconventional policies, monetary con-
ditions co-move positively: easing at home eases abroad and vice versa. Moreover, both
types of policies affect the exchange rate: conventional easing causes the home currency
to depreciate, and QE does the same.

The imperfect insulation result with global arbitrage is at odds with the Trilemma.
Indeed, according to the Trilemma, a country that wants to maintain monetary autonomy
must either let its currency float or impose capital controls. In our model, the exchange
rate is floating, and thus the Trilemma would imply that countries can maintain monetary
autonomy, in the narrow sense that they can set the monetary impulse to their economy
independently from monetary conditions in the rest of the world. Under global arbitrage,
however, each country’s term structure is influenced by monetary conditions in the other
country. Hence, a floating exchange rate does not yield monetary autonomy, at odds with
the Trilemma. Full insulation is possible under segmented arbitrage because of the lack of
capital mobility implied by segmentation and not because of the floating exchange rate.

Insulation is imperfect under global arbitrage because arbitrageurs rebalance their
entire portfolio of bonds and currencies in response to shocks, to optimize their exposures
to the risk factors. Through that rebalancing, factor prices are equalized across bonds
and currencies. For example, if arbitrageurs become more exposed to foreign short-rate
risk through their currency position, they adjust their home and foreign bond position
to attenuate that risk exposure. If arbitrageurs are risk-neutral, they do not do global
rebalancing, and the prices of the risk factors are always zero.

5 Demand Risk
In this section we return to the full model analyzed in Section 3 with global arbitrage and
stochastic demand for bonds and foreign currency. We estimate the model parameters by
comparing empirical to model-implied moments, and use the estimated model to assess
quantitatively the domestic and international transmission of monetary policy.
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5.1 Estimation

We reduce the model parameters in the estimation to a set that is manageable yet suffi-
ciently rich. We assume the functions {αj(τ)}j=H,F that describe how the demand slope of
preferred-habitat investors depends on bond maturity τ , and the functions {θj(τ)}j=H,F

that describe how shocks to the demand factors affect the demand intercept for maturity
τ take the exponential form

αj(τ) = αj0 exp(−αj1τ), (5.1)
θj(τ) = θj0τ exp(−θj1τ), (5.2)

for positive scalars (αj0, αj1, θj0, θj1). The function θj(τ) is positive and hump-shaped
with a peak at 1

θj1
. Thus, shifts to the demand factor βjt shift the demand for bonds of

all maturities in the same direction, with the effect being more pronounced at maturity
1
θj1

. The function αj(τ)τ , which describes the demand slope when demand is expressed as
function of yield rather than price, has the same functional form as θj(τ), with a peak at
1

αj1
. We take the demand parameters (αj0, αj1, θj0, θj1) to be the same across home and

foreign, and drop the subscript j. In the case of θj0 this is a normalization, as we explain
below. We set the maximum maturity T to infinity.

We take the mean-reversion matrix Γ to be diagonal except for the non-zero terms
Γ3,1 and Γ3,2. Thus, risk factors do not respond to each other’s movements except for the
currency demand factor γt that responds to short-rate movements in both countries. We
take the covariance matrix Σ to be diagonal except for the non-zero term Σ1,2 (setting Σ2,1

to zero is without loss of generality as the data only identify ΣΣ⊤). Thus, innovations
to risk factors are independent except for those to short rates. As with the demand
parameters, we take the mean reversion and volatility of the demand factors to be the
same across home and foreign, setting Γ4,4 = Γ5,5 and Σ4,4 = Σ5,5. The restrictions on
(Γ,Σ) simplify the estimation of the model and the interpretation of the results, while
allowing us to capture two key features of the data: the correlation between short rates
across countries, and the gradual response of exchange rates to short-rate shocks. With
these restrictions, and with analogous notation to that in Section 4, we can write Γ and
Σ as

Γ =


κiH 0 0 0 0

0 κiF 0 0 0

κγ,iH κγ,iF κγ 0 0

0 0 0 κβ 0

0 0 0 0 κβ

 , Σ =


σiH 0 0 0 0

σiH,iF σiF 0 0 0

0 0 σγ 0 0

0 0 0 σβ 0

0 0 0 0 σβ

 . (5.3)
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We do not require estimates of the long-run mean q̄ of the vector qt of risk factors,
the constant terms (ζe, {ζj(τ)}j=H,F ) in the demand intercepts, and the inflation rates
(πH , πF ). This is because these parameters concern long-run averages, while the results
in this section depend only on the part of our model that describes responses to shocks.

Our assumptions leave us eighteen parameters to estimate: two currency demand
parameters (αe, θe), four bond demand parameters (α0, α1, θ0, θ1), six elements of Γ, five
elements of Σ, and the arbitrageurs’ risk-aversion coefficient a. Our estimation procedure
does not identify the two demand intercept parameters (θe, θ0) and the arbitrageur risk-
aversion coefficient a. The parameters (θe, θ0) are not identified because they affect our
target moments only through their products (θeσγ, θ0σβ) with the volatility parameters of
the corresponding demand factors. We focus on these products and drop (θe, θ0, σγ, σβ)

as separate parameters. The parameter a is not identified because it affects our target
moments only through its products (aαe, aθeσγ, aα0, aθ0σβ) with the demand parameters.
Intuitively, exchange rates and bond yields can be volatile if demand shocks are modest
and arbitrageurs highly risk-averse, or if shocks are large and arbitrageur risk aversion
is low. Identifying a separately is important for assessing the effects of QE, so we bring
additional information to calibrate it.

We estimate the fifteen (=18-3) parameters via Generalized Method of Moments by
targeting moments of exchange rates, bond yields, and trading volume. We take the home
country to be the United States and the foreign country to be the Eurozone. We use the
Deutschemark as the foreign currency prior to introduction of the Euro in 01/1999, and
the German yield curve as the foreign yield curve. We focus on the US and the Eurozone
because they are roughly comparable in size and because a long time-series of zero-coupon
bond yields for a large set of maturities is available. Our sample of exchange rates and
bond yields is monthly. It starts in 06/1986, which is when zero-coupon bond yields are
consistently available for maturities up to 20 years, and ends in 04/2021. We source US
yields from the Federal Reserve and German yields from the Bundesbank.6 As in previous
sections, the units of time t and maturity τ are years. We source annual volume data by
maturity covering the period 2002-2020 for the US from the FR 2004 dataset.7

A first set of target moments concern one-year yields. We include them to obtain
information on the dynamics of short rates (parameters κiH , κiF , σiH , σiF , σiH,iF ). These
moments are: the standard deviation of one-year yields y

(1)
jt and of their annual change

∆y
(1)
jt ≡ y

(1)
j,t+1−y

(1)
jt , and the standard deviation of the one-year yield differential y(1)Ht−y

(1)
Ft

between home and foreign.
A second set of moments concern the exchange rate. We include them to obtain

information on the slope of currency demand and on the dynamics of the currency demand
6https://www.federalreserve.gov/data/nominal-yield-curve.htm (Gurkaynak, Sack, and Wright

(2007)) and https://www.bundesbank.de/en/statistics/money-and-capital-markets/interest-rates-and-
yields/term-structure-of-interest-rates.

7https://www.newyorkfed.org/markets/counterparties/primary-dealers-statistics.
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factor (parameters αe, κγ, κγ,iH , κγ,iF , θeσγ). These moments are: the standard deviation
of the annual (log) exchange rate change ∆ log et ≡ log et+1−log et; the correlation between
∆ log et and the one-year yield differential y(1)Ht − y

(1)
Ft ; the correlation between ∆ log et and

the annual change ∆y
(1)
jt in the home and the foreign one-year yield; and the correlation

between the five-year change in the exchange rate ∆(5) log et ≡ log et+5 − log et and the
five-year yield differential y(5)Ht − y

(5)
Ft .

A third set of moments concern yields across all maturities up to twenty years. We
include them to obtain information on the slope of bond demand and on the dynamics
of the bond demand factors (parameters α0, κβ, θ0σβ). These moments are: the standard
deviation of yields y

(τ)
jt and of their annual change ∆y

(τ)
jt ≡ y

(τ)
j,t+1 − y

(τ)
jt ; the correlation

between the annual changes ∆y
(1)
jt in one-year yields and ∆y

(τ)
jt in all other yields; and the

standard deviation of yield differentials y
(τ)
Ht − y

(τ)
Ft for all maturities.

A final set of moments concern trading volume. We include them to obtain information
on the shape of bond demand (parameters α1, θ1). These moments are the trading volume
of US government bonds with maturities between zero and three years, and with maturities
between eleven and thirty years, as a fraction of total US government bond trading volume
(denoted by ṼH(0 ≤ τ ≤ 3) and ṼH(11 ≤ τ ≤ 30), respectively).

The total number of target moments is N = 12+ 7(NT − 1), where NT is the number
of bond maturities (we subtract one to not double-count the one-year maturity). With
maturities going from one to twenty years in annual increments, NT equals twenty and
the number of target moments is 145 (=12 + 7 × 19). We refer to the twelve moments
that do not depend on maturity as scalar.

We estimate the model by choosing the vector ρ of 17 parameters that minimizes

L(ρ) =
N∑

n=1

wn(m̂n −mn(ρ))
2, (5.4)

the weighted sum of squared differences between the empirical target moments {m̂n}n=1,..,N

and their model-implied counterparts {mn(ρ)}n=1,..,N , which are functions of ρ. We set
the weights wn to one for scalar moments and to 1

NT
for moments that depend on matu-

rity, so that each type of moment receives the same weight (for moments corresponding to
the one-year maturity, we use 1 + 1

NT
). The methodology to calculate the model-implied

moments is described in Appendix C.
We finally calibrate a. Since a is the coefficient of arbitrageurs’ absolute risk aversion,

it is equal to the coefficient γ of their relative risk aversion divided by their wealth W .
We set γ = 2, in line with common estimates. An estimate for W can be derived by
identifying arbitrageurs with hedge funds. The assets of hedge funds in the fixed-income,
macro and balanced categories in 2020 were about 5% of US GDP in that year.8 Taking

8https://www.barclayhedge.com/solutions/assets-under-management/hedge-fund-assets-under-
management/
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US GDP as the numeraire, we can thus set W = 5%. We use that value as a lower
bound for W since arbitrageurs can include additional agents such as global banks and
multinational corporations, and use 20% as an upper bound. The implied bounds for a

are 2/5% = 40 and 2/20% = 10.

5.2 Model Fit

Table 1 compares the empirical and model-implied scalar moments. Figure 1 does the
same for the moments that depend on maturity. The empirical moments are the red
circles in Figure 1, and the model-implied moments are the blue solid lines. Standard
deviations are reported in percentages throughout this section (e.g., σ

(
y
(1)
Ht

)
= 2.622%

and σ (∆ log et) = 10.186% in Table 1). The model fits well the large set of target
moments, both across maturities and across countries.

Moment Data Model Moment Data Model
σ
(
y
(1)
Ht

)
2.622 2.614 ρ

(
∆ log et, (y

(1)
Ht − y

(1)
Ft )
)

-0.105 -0.096

σ
(
∆y

(1)
Ht

)
1.273 1.254 ρ

(
∆ log et,∆y

(1)
Ht

)
-0.095 -0.214

σ
(
y
(1)
Ft

)
2.822 2.853 ρ

(
∆ log et,∆y

(1)
Ft

)
0.048 0.071

σ
(
∆y

(1)
Ft

)
1.09 1.174 ρ

(
∆(5) log et, (y

(5)
Ht − y

(5)
Ft )
)

0.12 0.06

σ
(
(y

(1)
Ht − y

(1)
Ft )
)

1.816 1.717 ṼH(0 ≤ τ ≤ 3) 0.361 0.378
σ (∆ log et) 10.186 10.183 ṼH(11 ≤ τ ≤ 30) 0.08 0.116

Table 1: Scalar Moments in the Data and the Model

Table 2 reports the estimated model parameters. Innovations to the home short rate
have somewhat higher standard deviation (σiH = 1.43) and lower persistence (κiH =

0.126) than to the foreign short rate (
√
σ2
iH,iF + σ2

iF = 1.294 and κiF = 0.0896), and are
positively correlated (correlation σiH,iF√

σ2
iH,iF+σ2

iF

= 0.814). Innovations to the demand for
foreign assets by currency traders are somewhat less persistent (κγ = 0.134) than to short
rates, and respond negatively to the home short rate (κγ,iH = −0.267) and positively to
the foreign short rate (κγ,iF = 0.252). Thus, a drop in the home short rate or a rise in
the foreign short rate causes the demand for foreign assets to rise, holding the exchange
rate constant. Innovations to bond demand are more persistent than to short rates and
currency demand (κβ = 0.0501).

The slope αe of currency demand can be derived by dividing aαe by a. It ranges from
7.34 (=73.4

10
) for the lower bound of a to 1.83 (=73.4

40
) for the upper bound. Thus, a 1%

drop in the exchange rate raises the demand for foreign assets by an amount ranging from
7.34% (= 7.34× 1%) to 1.83% of US GDP. The slope parameter α0 of bond demand can
likewise be derived by dividing aα0 by a, and ranges from 0.474 to 0.119. To interpret this
coefficient, consider a uniform 0.1% rise in home or foreign bond yields. This translates
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Figure 1: Maturity-Dependent Moments in the Data and the Model

Parameter Value Parameter Value Parameter Value
κiH 0.126 κγ 0.134 aσβθ0 90.6
κiF 0.0896 κγ,iH -0.267 aαe 73.4
σiH 1.43 κγ,iF 0.252 aα0 4.74
σiF 0.751 aσγθe 763.0 α1 0.144
σiH,iF 1.05 κβ 0.0501 θ1 0.374

Table 2: Estimated Model Parameters

to a price drop of the corresponding τ -year bond by τ × 0.1%, which for a ten-year bond
is 1%, the same as for the exchange-rate exercise. The aggregate bond demand across
maturities rises by an amount ranging from 2.295% (=

∫∞
0

α0 exp(−α1τ)τdτ × 0.1% =
α0

α2
1
× 0.1% = 0.474

0.1442
× 0.1%) of US GDP to 0.574%. By comparison, Krishnamurthy and

Vissing-Jorgensen (2012) estimate that a 0.1% drop in the spread between AAA-rated
US corporate bonds and US government bonds raises government bond demand by 5.9%
of US GDP. Their estimate is about four times as large as the midpoint of ours. This
discrepancy may arise because an increase in government bond yields in our estimation
can be accompanied by an increase in corporate bond yields (which mitigates the increase
in the spread). Another estimate comes from Koijen and Yogo (2020), who find that a
1% price drop in the price of long-maturity bonds (maturity of one year or longer) raises
their demand by foreign investors by 1.9%. This estimate is not directly comparable to
ours as we do not distinguish whether preferred-habitat investors for a country’s bonds
are home or foreign.

We next examine the implications of our estimated model for the predictability of
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Figure 2: Coefficients of Regressions on Uncovered Interest Parity

currency and bond returns. We do so by running common regressions in the asset pricing
literature and comparing the empirical coefficients computed within our sample to the
coefficients implied by our model. The empirical coefficients are the red circles in Figures
2 and 3, and the model-implied coefficients are the blue solid lines. The black dashed
lines show the UIP benchmark in Figure 2 and the EH benchmark in Figure 3. Shaded
areas are 95% confidence intervals. The calculations of the model-implied coefficients are
in Appendix C.

Figure 2 reports coefficients for various types of UIP regressions. The top left panel
concerns the hybrid UIP regression of Lustig, Stathopoulos, and Verdelhan (2019, LSV),
in which the return over horizon ∆τ of the hybrid CCT constructed using bonds with ma-
turity τ is regressed on the foreign-minus-home ∆τ -year yield differential. This regression
nests as a special case, for τ = ∆τ , the standard UIP regression of Bilson (1981) and Fama
(1984). Under the UIP, the LSV coefficient should be zero. The empirical coefficients
are positive and statistically significant for short maturities, consistent with Bilson (1981)
and Fama (1984). They decline with maturity and become statistically insignificant for
long maturities. This is consistent with LSV, although LSV’s coefficients, computed over
multiple currency pairs rather than over only Dollar/Euro as in our estimation, are closer
to zero. The model-implied coefficients are close to the empirical coefficients.

The top right panel in Figure 2 concerns the long-horizon UIP regression of Chinn and
Meredith (2004, CM), in which the rate of foreign currency depreciation over horizon ∆τ

is regressed on the foreign-minus-home ∆τ -year yield differential. Under the UIP, the CM
coefficient should be one. The empirical coefficients are not statistically different from
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zero at short maturities, although confidence intervals are large because we use only one
currency pair. As horizon increases, the empirical coefficients go to one, consistent with
CM. The model-implied coefficients approach one as maturity increases, somewhat more
slowly than the empirical ones.

The bottom two panels concern regressions run in Chernov and Creal (2020) and Lloyd
and Marin (2020), in which the rate of foreign currency depreciation over horizon ∆τ is
regressed on the foreign-minus-home ∆τ -year yield differential (level—same regressor as
in CM), and the foreign-minus-home slope differential (slope). Under UIP, the level coef-
ficient should be one and the slope coefficient should be zero. As with the CM regression,
the coefficients using only one currency pair are imprecisely estimated, but the point es-
timates are consistent with the literature. In particular, the slope coefficient is positive,
meaning that for a given yield differential, the foreign-minus-home CCT is less profitable
when the foreign-minus-home slope differential is larger. Our model implies a positive
slope coefficient, as in the data. Indeed, suppose that the demand for foreign bonds by
preferred-habitat investors is temporarily low. This pushes up foreign bond yields, raising
the foreign-minus-home slope differential. It also causes the foreign currency to appreciate
temporarily (Proposition 4.7), and its future expected return to decline. As in the data,
the predictability of slope in our model is primarily over short and medium maturities.

Overall, our model matches well the UIP regression evidence. This is helped by
our using the one- and five-year coefficients in the long-horizon UIP regression as target
moments. (Our target moments include the numerator and denominator in each of the
two coefficients.) Yet, these are only two data points in one panel in Figure 2, and our
model matches closely the evidence in all four panels, including in the bottom right panel
which is generated by a different mechanism. Our model also matches reasonably well
the EH regression evidence in Figure 3, which is fully untargeted.

The top left and top right panels in Figure 3 concern the Fama and Bliss (1987, FB)
regression in the home and foreign country, respectively. FB regress the excess return
over horizon ∆τ of the bond with maturity τ on the difference between the forward rate
between maturities τ −∆τ and τ , and the ∆τ -year spot rate (yield). The bottom left and
bottom right panels concern the Campbell and Shiller (1991, CS) regression in the home
and foreign country, respectively. CS regress the change over horizon ∆τ in the yield of a
bond with initial maturity τ on a scaled difference between the spot rates for maturities
τ and ∆τ . Under the EH, the FB coefficient should be zero and the CS coefficient should
be one. The empirical coefficients are consistent with the findings of FB and CS: the FB
coefficient is positive and increasing with maturity, and the CS coefficient is negative and
decreasing with maturity.

The model-implied FB and CS coefficients have the same sign as their empirical coun-
terparts but not the same monotonicity. The FB coefficient is positive and around one
for all maturities. It is close to its empirical counterpart for maturities ranging from five
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Figure 3: Coefficients of Regressions on Expectations Hypothesis

to ten years, but becomes smaller for longer maturities. The CS coefficient is negative
and around minus one for short maturities, and increases slightly with maturity. It is
close to its empirical counterpart for maturities ranging from five to ten years, but be-
comes smaller in absolute value for longer maturities. Thus, our model matches closely
the empirical deviations from EH for maturities ranging from five to ten years, but not for
longer maturities as these deviations become larger in the data. Yet, even for the longer
maturities, our model generates sizeable deviations from EH.

5.3 Monetary Policy

We next use our estimated model to study the domestic and international transmission
of monetary policy. We start with conventional policy, and consider a cut to the short
rate by the central bank in country j. We assume that the cut is unanticipated, occurs
at time zero, and is unwound over time at a rate κMP

ij possibly different from κij. We
model the short-rate movement induced by the cut as a separate, additive component
∆ijt = ∆ij0e

−κMP
ij t of the short-rate process. We set ∆ij0 = −0.25, implying a cut of 25

basis points (bps), and κMP
ij = 0.75, implying a half-life of the cut of about a year.

The top left and top right panels of Figure 4 show, respectively, how a cut to the
home short rate affects the home and foreign structures at time zero and how it affects
the exchange rate over time. The bottom left and right panels show the same for a cut
to the foreign short rate. The home term structure is shown in blue and the foreign term
structure in red. Exchange-rate movements are measured as percentage price changes.

The cut affects the term structure in the country where it originates, but has essentially
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Figure 4: Conventional Monetary Policy – Short Rate Cut

no effect on the other country’s term structure. The international transmission is weak
partly because short rates are positively correlated across countries. Indeed, in response to
a cut to the home short rate, arbitrageurs build long positions in home bonds and foreign
currency (Proposition 4.4) but hedge only mildly the currency position with foreign bonds.
This is because a drop in the foreign short rate, which generates losses in the currency
position, is positively correlated with a drop in the home short rate, which generates
gains in home bonds and foreign currency. If short rates are independent, with the same
volatilities as in our estimation (i.e., (σiH , σiF ) = (1.43, 1.294)), then the effect of the cut
to the home short rate on foreign yields ranges from 7.5% to 15.5% that on home yields
for intermediate maturities between five and ten years.

The response of the exchange rate is hump-shaped. Following the cut to the home
short rate, the exchange rate jumps up (i.e., the foreign currency appreciates) by 0.7%,
then rises further by 0.15% over the next two years, and then declines gradually to its
pre-cut value. The exchange-rate response is hump-shaped because demand for foreign
assets rises gradually following the cut to the home short rate (κγ,iH < 0). The demand
effect is dominant: in its absence, the exchange rate would jump up by roughly 0.15%,
only one-half of the effect under UIP (0.25%

κMP
ij

= 0.33%).
We next turn to unconventional policy, and consider QE purchases by the central

bank in country j. We assume that the purchases are unanticipated, occur at time zero,
and are unwound over time at a rate κQE

βj possibly different from κβj. We model the
net addition to the central bank’s position in the bond with maturity τ as a separate,
additive component θQE

j (τ)∆βjt of the demand-intercept process, where θQE
j (τ) has the

33



Figure 5: Unconventional Monetary Policy – Bond Purchases

exponential form (5.2) and ∆βjt = ∆βj0e
−κQE

βj t. We allow the parameters (θQE
0 , θQE

1 ) to
differ from (θ0, θ1), and normalize ∆βj0 to one. We set κQE

βj = 0.1, implying a half-life of
QE purchases of about seven years, θQE

1 to 0.2, implying that purchases are maximized
at the five-year maturity ( 1

θQE
1

= 5), and θQE
0 = 0.004, implying that purchases are 10%

of US GDP ( θQE
0

(θQE
1 )

2 = 0.1).
The top left and top right panels of Figure 5 show, respectively, how QE purchases in

the home country affect the home and foreign term structures at time zero and how they
affect the exchange rate over time. The bottom left and right panels show the same for
QE purchases in the foreign country. The coloring and units are the same as in Figure 4.
Figure 5 sets arbitrageur risk aversion a to 40. When a = 10, the effects are one-quarter
of those in the figure.

QE purchases have sizeable effects on the term structure in the country where they
originate: they reduce intermediate yields by between 40-50bps. The mid-point of this
estimate and of the one for a = 10 is about 30bps, slightly lower than in the literature:
according to Wiliams (2014), a consensus estimate is that QE purchases of 10% of GDP
reduce the ten-year yield by 35-65bps.

QE purchases affect yields in the non-originating country almost as much as in the
originating country: the non-originating country’s yield curve responds by nearly 90%
relative to the originating country’s yield curve. Hence, conventional and unconventional
policy differ sharply in their transmission to international bond yields: spillovers are non-
existent for the former, and sizeable for the latter. In terms of the exchange rate response,
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the effect of QE is comparable to that of conventional policy. QE in the home country
causes the foreign currency to appreciate by about 0.6%, while QE in the foreign country
causes the foreign currency to depreciate by about 0.45%. The effect is largest on impact
and reverts towards zero as QE purchases are unwound.

The international transmission of unconventional policy to bond yields is strong partly
because short rates are positively correlated across countries and partly because the de-
mand by currency traders is sufficiently price-elastic. The intuition for the effect of cor-
relation is as follows. In response to QE in the home country, arbitrageurs reduce their
positions in home bonds. They rebuild their exposure to short-rate risk by buying posi-
tively correlated foreign bonds, thus exerting downward pressure to those bonds’ yields.
If we counterfactually assume that short rates are independent (with the same volatilities
as in our estimation), then ten-year foreign yields respond by nearly 80% relative to home
yields in response to a home QE shock. If we maintain correlated short rates and assume
that currency elasticities are much smaller than implied by the data (reducing aαe three-
fold from 74.3 to 25.0), we find that a home QE shock moves ten-year foreign yields by
roughly 70% relative to home yields. It is only when we assume both that short rates are
independent and currency traders are much less price-elastic than implied by the data
that we find significantly smaller QE spillover effects: a home QE shock moves ten-year
foreign yields by only 30% relative to home yields. Hence, our result that the spillover
effects to international bond yields are stronger for unconventional than for conventional
policy is quantitatively robust.9

6 Concluding Remarks
We model exchange rates and bond yields as determined by the interaction of different
investor clienteles. Global arbitrageurs partially integrate domestic and foreign asset
markets, but imperfect risk-bearing capacity leads to deviations from the predictions of
standard models. Beyond making sense of the predictability patterns of currency and bond
returns found in the data, our model has important implications for the transmission of
monetary policy. Both conventional and unconventional monetary policy cause global
arbitrageurs to rebalance their portfolio of currencies and bonds, to optimally manage
their risk exposure. The joint determination of currency and bond risk premia implies that
policy shocks in one country have spillovers in the domestic bond market, the currency
market, and the foreign bond market. Our estimated model shows that the international
spillovers of large-scale asset purchases are particularly strong: domestic QE purchases
of long-maturity bonds push down foreign bond yields by nearly the same amount as
domestic bond yields, in addition to depreciating the currency.

9Our result is similarly robust when we vary the bond elasticities.
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Appendix – For Online Publication

A Forwards and Swaps
We show that the equilibrium with a currency forward market is equivalent to one without
it but with different currency and bond demands. The equivalence result extends to swaps
because they are portfolios of forwards.

We model the demand for currency forwards as follows. Currency traders with pref-
erences for forward contracts with maturities in [τ, τ + dτ ] are in measure dτ , and their
demand, expressed in units of the home currency, is

Z
(τ)
et = −(ζe(τ) + θe(τ)γt), (A.5)

where (ζe(τ), θe(τ)) are functions of τ .
Since global arbitrageurs can trade costlessly home and foreign bonds and foreign cur-

rency in the spot market, Covered Interest Parity (CIP) holds. Moreover, the demand
Z

(τ)
et for the foreign-currency forward contract with maturity τ is equivalent to the com-

bination of (i) a demand Z
(τ)
et for foreign currency in the spot market, (ii) a demand Z

(τ)
et

for the foreign bond with maturity τ , and (iii) a demand −Z
(τ)
et for the home bond with

maturity τ . Hence, the equilibrium with the forward market is equivalent to one with-
out it but with the demands (i)-(iii) added to the currency demand (2.5) and the bond
demand (2.6). The demand for foreign currency becomes

Zet +

∫ T

0

Z
(τ)
et dτ = −αe log(et)− (ζet + θeγt)−

∫ T

0

(ζe(τ) + θe(τ)γt)dτ

instead of Zet. The demand for country j bonds with maturity τ becomes

Z
(τ)
jt +(−1)1{j=H}Z

(τ)
et = −αj(τ) log

(
P

(τ)
jt

)
−(ζj(τ) + θj(τ)βjt)−(−1)1{j=H} (ζe(τ) + θe(τ)γt)

instead of Z(τ)
jt . Forwards induce a negative correlation between currency and home bond

demands, and a positive correlation between currency and foreign bond demands.
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B Proofs
Proof of Proposition 3.1: Using the definitions of (EiH ,EiF ,Eγ,EβH ,EβF ), we can write
(3.18) as

aΣΣ⊤

(
Ae (θeEγ − αeAe)

⊤ +
∑

j=H,F

∫ T

0

Aj(τ) (θj(τ)Eβj − αj(τ)Aj(τ))
⊤ dτ

)
qt

+ aΣΣ⊤

(
(ζe − αeCe)Ae +

∑
j=H,F

∫ T

0

(ζj(τ)− αj(τ)Cj(τ))Aj(τ)

)
= −(M − Γ⊤)⊤qt + λC , (B.1)

where the second step follows from the definitions of (M,λC) in the statement of the
proposition. We next substitute (µet, {µ(τ)

jt }j=H,F , λt) from (3.6), (3.8), (3.10) and (B.1)
into the arbitrageurs’ first-order condition. Substituting into (3.12) and identifying terms
in qt and constant terms, we find (3.19) and (3.20), respectively. Substituting into (3.13)
and identifying terms in qt and constant terms, we find (3.21) and (3.22), respectively.

Proof of Corollary 3.1: The results for a = 0 follow from the arguments before the
corollary’ statement. When a goes to zero, (3.19), (3.21) and (3.23) imply that M goes
to Γ⊤ and (Ae, {Aj(τ)}j=H,F ) have the finite limits

lim
a→0

Ae =
(
Γ−1
)⊤

(EiH − EiF ) ,

lim
a→0

Aj(τ) =
(
Γ−1
)⊤ (

I − e−Γ⊤τ
)
Eij.

When (3.25) holds, (3.20), (3.24) (3.24) are met with λC having a zero limit and (Ce, {Cj(τ)}j=H,F )

having finite limits. Equation (3.18) then implies that λt goes to zero, which means from
(3.12) and (3.13) that UIP and EH hold in the limit. When instead (3.25) does not hold,
(3.20) implies that A⊤

e λC has a non-zero limit. When, in addition, αe > 0, (3.20), (3.24)
(3.24) are met with λC having a non-zero limit, {Cj(τ)}j=H,F having finite limits, and Ce

going to plus or minus infinity at the rate 1
a
. Equation (3.18) then implies that λt does

not go to zero, which means from (3.12) and (3.13) that UIP and EH do not hold.

Propositions B.1 and B.2 characterize the equilibrium in the currency and bond mar-
ket, respectively, under segmented arbitrage and the parameter restrictions assumed in
Section 4.

Proposition B.1. Suppose that arbitrage is segmented, the matrices (Γ,Σ) are diagonal,
and Σ3,3 = Σ4,4 = Σ5,5 = 0. The exchange rate et is given by (3.1), with (AiHe, AiFe)

positive and equal to the unique solution of

κijAije − 1 = −aeαeAije

(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
, (B.2)
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and Ce solving

− κiHiHAiHe + κiF iFAiFe − (πF − πH) +
1

2
σ2
iHA

2
iHe +

1

2
σ2
iFA

2
iFe

= ae (ζe − αeCe)
(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)
. (B.3)

Proof of Proposition B.1: The first-order condition (4.2) follows from (3.12) by keeping
only the term WFtAe in the parenthesis in (3.14), taking Σ to be diagonal with Σ3,3 =

Σ4,4 = Σ5,5 = 0, and replacing a by ae. Proceeding as in the derivation of (3.18) and using
γt = βHt = βFt = 0, we find λet = (λeHt, λeF t) with

λejt = aeσ
2
ij [ζe − αe (AiHeiHt − AiFeiFt + Ce)]Aije(−1)1{j=F} (B.4)

for j = H,F . Since (Γ,Σ) are diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0 and γt = βHt = βFt =

0, we can write (3.6) as

µet = −AiHeκiH(iH−iHt)+AiFeκiF (iF −iFt)−(πF −πH)+
1

2
A2

iHeσ
2
iH+

1

2
A2

iFeσ
2
iF . (B.5)

Substituting λet from (B.4) and µet from (B.5) into (4.2), we find an equation that is
affine in (iHt, iFt). Equation (B.2) follows by identifying the linear terms in (iHt, iFt), and
(B.3) follows by identifying the constant terms.

When aαe = 0, (B.2) has the unique solution (AiHe, AiFe) =
(

1
κiH

, 1
κiF

)
, which is

positive. Consider next the case aαe > 0. A solution (AiHe, AiFe) to (B.2) must be
positive, as can be seen by writing that equation as

[
κij + aeαe

(
σ2
iHA

2
iHe + σ2

iFA
2
iFe

)]
Aije = 1. (B.6)

Since (AiHe, AiFe, aαe) are positive, the right-hand side of (B.2) is negative. Therefore,
the left-hand side is negative as well, which implies AiHe <

1
κHj

and AiFe <
1

κFj
. Dividing

(B.2) written for j = H by (B.2) written for j = F , we find

1− κiHAiHe

1− κiFAiFe

=
AiHe

AiFe

⇔ AiHe =
AiFe

1 + (κiH − κiF )AiFe

. (B.7)

Equation (B.7) determines AiHe as an increasing function of AiFe ∈
[
0, 1

κiF

]
, equal to zero

for AiFe = 0, and equal to 1
κiH

for AiFe =
1

κiF
. Substituting AiHe as a function of AiFe in

(B.6) written for j = F , we find an equation in the single unknown AiFe. The left-hand
side of that equation is increasing in AiFe, is equal to zero for AiFe = 0, and is equal
to a value larger than one for AiFe = 1

κiF
. Hence, that equation has a unique solution

AiFe ∈
(
0, 1

κiF

)
. Given that solution, (B.7) determines AiHe ∈

(
0, 1

κiH

)
uniquely. Given
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(AiHe, AiFe), (B.3) determines Ce uniquely if αe > 0. If αe = 0, then the restriction

iH − πH = iF − πF +

(
1

2
− aeζe

)(
σ2
iH

κ2
iH

+
σ2
iF

κ2
iF

)
(B.8)

on model parameters must be imposed and Ce is indeterminate.

Proposition B.2. Suppose that arbitrage is segmented, the matrices (Γ,Σ) are diagonal,
and Σ3,3 = Σ4,4 = Σ5,5 = 0. Bond prices P

(τ)
jt in country j = H,F are given by (3.2),

with Aij′j(τ) equal to zero for j′ ̸= j and (Aijj(τ), Cij(τ)) equal to the unique solution of
the system

A′
ijj(τ) + κijAijj(τ)− 1 = −ajσ

2
ijAijj(τ)

∫ T

0

αj(τ)Aijj(τ)
2dτ, (B.9)

C ′
j(τ)− κijijAijj(τ) +

1

2
σ2
ijAijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
= ajσ

2
ijAijj(τ)

∫ T

0

[ζj(τ)− αj(τ)Cj(τ)]Aijj(τ)dτ, (B.10)

with the initial conditions Aijj(0) = Cj(0) = 0.

Proof of Proposition B.2: The first-order condition (4.3) follows from (3.13) by keeping
only the term

∫ T

0
X

(τ)
jt Aj(τ)dτ in the parenthesis in (3.14), taking Σ to be diagonal with

Σ3,3 = Σ4,4 = Σ5,5 = 0, replacing a by aj, and conjecturing that in equilibrium Aij′j(τ) = 0

for j′ ̸= j. Proceeding as in the derivation of (3.18) and using γt = βHt = βFt = 0 and
Aij′j(τ) = 0 for j′ ̸= j, we find

λjt = ajσ
2
ij

(∫ T

0

[ζj(τ)− αj(τ) (Aijj(τ)ijt + Cj(τ))]Aijj(τ)dτ

)
. (B.11)

Since (Γ,Σ) are diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0, γt = βHt = βFt = 0, and
Aij′j(τ) = 0 for j′ ̸= j, we can write (3.8) and (3.10) as

µ
(τ)
jt = A′

ijj(τ)ijt+C ′
j(τ)−Aijj(τ)κij(ij−ijt)+Aijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
σ2
ij. (B.12)

Substituting λjt from (B.11) and µjt from (B.12) into (4.3), we find an equation that
is affine in ijt. Equation (B.9) follows by identifying the linear terms in ijt, and (B.10)
follows by identifying the constant terms. The initial conditions Aijj(0) = Cj(0) = 0

follow because the price of a bond with zero maturity is its face value, which is one. Since
the affine equation holds when (B.9) and (B.10) hold, our conjecture Aij′j(τ) = 0 for
j′ ̸= j is validated.
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Solving (B.9) with the initial condition Aijj(0) = 0, we find

Aijj(τ) =
1− e−κ∗

ijτ

κ∗
ij

, (B.13)

with

κ∗
ij ≡ κij + ajσ

2
ij

∫ T

0

αj(τ)Aijj(τ)
2dτ. (B.14)

Substituting Aijj(τ) from (B.13) into (B.14), we find the equation

κ∗
ij − κij + ajσ

2
ij

∫ T

0

αj(τ)

(
1− e−κ∗

ijτ

κ∗
ij

)2

dτ = 0 (B.15)

in the single unknown κ∗
ij. The left-hand side of (B.15) is increasing in κ∗

ij, is negative
for κ∗

ij = κij, and goes to infinity when κ∗
ij goes to infinity. Hence, (B.15) has a unique

solution κ∗
ij > κij. Given κ∗

ij, (B.13) determines Aijj(τ) uniquely.
Solving (B.10) with the initial condition Cj(τ) = 0, we find

Cj(τ) = κ∗
iji

∗
j

∫ τ

0

Aijj(τ)dτ − 1

2
σ2
ij

∫ τ

0

Aijj(τ)
2dτ, (B.16)

with

κ∗
iji

∗
j ≡ κijij + ajσ

2
ij

∫ T

0

[ζj(τ)− αj(τ)Cj(τ)]Aijj(τ)dτ + σ2
ijAiFe1{j=F}. (B.17)

Substituting Cj(τ) from (B.16) into (B.17), we find

i
∗
j =

κijij + ajσ
2
ij

∫ T

0
ζj(τ)Aijj(τ)dτ + σ2

ijAiFe1{j=F} +
1
2
ajσ

4
ij

∫ T

0
αj(τ)

(∫ τ

0
Aijj(τ

′)2dτ ′
)
Aijj(τ)dτ

κ∗
ij

[
1 + ajσ2

ij

∫ T

0
αj(τ)

(∫ τ

0
Aijj(τ ′)dτ ′

)
Aijj(τ)dτ

] .

(B.18)

Given i
∗
j , (B.16) determines Cj(τ) uniquely.

Proof of Proposition 4.1: The property Aije > 0 is shown in the proof of Proposition
B.1. The UIP value of Aije is AUIP

ije ≡ 1
κij

, as can be seen from (B.2) by setting ae = 0.
When ae > 0 and αe > 0, the proof of Proposition B.1 shows Aije <

1
κij

. Differentiating
(B.5) with respect to iHt and iFt, we find

∂(µet + iFt − iHt)

∂iHt

= κiHAiHe − 1 < 0,

∂(µet + iFt − iHt)

∂iFt

= −κiFAiFe + 1 > 0,
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respectively.

Proof of Proposition 4.2: The properties Aijj(τ) > 0 and Aij′j = 0 for j′ ̸= j are
shown in the proof of Proposition B.2. The EH value of Aijj(τ) is AEH

ijj (τ) ≡ 1−e−κijτ

κij
,

as can be seen from (B.13) and (B.14) by setting aj = 0. When aj > 0 and αj(τ) > 0,
(B.14) implies κ∗

ij > κij and (B.13) implies Aijj(τ) < AEH
ijj (τ). Differentiating (B.12) with

respect to ijt, we find

∂
(
µ
(τ)
jt − ijt

)
∂ijt

= A′
ijj(τ) + κijAijj(τ)− 1 = (κij − κ∗

ij)Aijj(τ) < 0,

where the second step follows from (B.13).

Proof of Proposition 4.3: Consider an one-off increase in γt at time zero, and denote
by κγ the rate at which γt reverts to its mean of zero. Equation (B.4) is modified to

λejt = aeσ
2
ij [ζe + θeγt − αe (AiHeiHt − AiFeiFt + Aγeet + Ce)]Aijt(−1)1{j=F} (B.19)

and (B.5) is modified to

µet = −AiHeκiH(iH−iHt)+AiFeκiF (iF−iFt)+Aγeκγγt−(πF−πH)+
1

2
A2

iHeσ
2
iH+

1

2
A2

iFeσ
2
iF .

(B.20)

Substituting λejt from (B.19) and µet from (B.20) into (4.2), we find an equation that is
affine in (iHt, iFt, γt). Identifying the linear terms in γt yields

κγAγe = ae(θe − αeAγe)
(
A2

iHeσ
2
iH + A2

iFeσ
2
iF

)
⇒ Aγe =

aeθe (A
2
iHeσ

2
iH + A2

iFeσ
2
iF )

κγ + aeαe (A2
iHeσ

2
iH + A2

iFeσ
2
iF )

. (B.21)

When αe > 0, (B.21) implies Aγe > 0 because θe > 0. Hence, an increase in γt causes the
foreign currency to depreciate. Since bonds in each country are traded by a separate set
of agents than those trading foreign currency, their prices do not depend on γt.

Consider next an one-off increase in βjt at time zero, and denote by κβj the rate at
which βjt reverts to its mean of zero. Equation (B.11) is modified to

λjt = ajσ
2
ij

(∫ T

0

[ζj(τ)− αj(τ) (Aijj(τ)ijt + Aβjj(τ)βjt + Cj(τ))]Aijj(τ)dτ

)
, (B.22)
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and (B.12) is modified to

µ
(τ)
jt =A′

ijj(τ)ijt + A′
βjj(τ)βjt + C ′

j(τ)− Aijj(τ)κij(ij − ijt) + Aβjj(τ)κβjβjt

+
1

2
Aijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
σ2
ij. (B.23)

Substituting λjt from (B.22) and µjt from (B.23) into (4.3), we find an equation that is
affine in (ijt, βjt). Identifying the linear terms in βjt yields

A′
βjj(τ) + κβjAβjj(τ) = ajσ

2
ijAijj(τ)

∫ T

0

[θj(τ)− αj(τ)Aβjj(τ)]Aijj(τ)dτ. (B.24)

Solving (B.24) with the initial condition Aβjj(τ) = 0, we find

Aβjj(τ) = λ̄ijβj

∫ τ

0

Aijj(τ
′)e−κβj(τ−τ ′)dτ ′, (B.25)

where

λ̄ijβj ≡ ajσ
2
ij

∫ T

0

[θj(τ)− αj(τ)Aβjj(τ)]Aijj(τ)dτ. (B.26)

Substituting Aβjj(τ) from (B.25) into (B.26) and solving for λ̄ijβj, we find

λ̄ijβj =
ajσ

2
ij

∫ T

0
θj(τ)Aijj(τ)dτ

1 + ajσ2
ij

∫ T

0
αj(τ)

(∫ τ

0
Aijj(τ ′)e−κβj(τ−τ ′)dτ ′

)
Aijj(τ)dτ

. (B.27)

When aj > 0, (B.27) implies λijβj > 0 and (B.25) implies Aβjj(τ) > 0 because (θj(τ), Aijj(τ))

are positive. Hence, an increase in βjt raises bond yields in country j. Since the foreign
currency and bonds in country j′ are traded by different agents than those trading bonds
in country j, their prices do not depend on βjt.

Proposition B.3. Suppose that arbitrage is global, the matrices (Γ,Σ) are diagonal, and
Σ3,3 = Σ4,4 = Σ5,5 = 0. The exchange rate et is given by (3.1) and bond prices P

(τ)
jt in

country j = H,F are given by (3.2), with ({Aije}j=H,F , Ce) solving

κijAije − 1 = aσ2
ijλ̄ijjAije − aσ2

ij′λ̄ij′jAij′e, (B.28)

− κiHiHAiHe + κiF iFAiFe − (πF − πH) +
1

2
σ2
iHA

2
iHe +

1

2
σ2
iFA

2
iFe (B.29)

= aσ2
iH λ̄iHCAiHe − aσ2

iF λ̄iFCAiFe,
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and (Aijj(τ), Aijj′(τ), Cj(τ)) solving

A′
ijj(τ) + κijAijj(τ)− 1 = aσ2

ijλ̄ijjAijj(τ) + aσ2
ij′λ̄ij′jAij′j(τ), (B.30)

A′
ij′j(τ) + κij′Aij′j(τ) = aσ2

ijλ̄ijj′Aijj(τ) + aσ2
ij′λ̄ij′j′Aij′j(τ), (B.31)

C ′
j(τ)− κijijAijj(τ)− κij′ij′Aij′j(τ) +

1

2
σ2
ijAijj(τ)

(
Aijj(τ)− 2AiFe1{j=F}

)
+

1

2
σ2
ij′Aij′j(τ)

(
Aij′j(τ) + 2AiHe1{j=F}

)
= aσ2

ijλ̄ijCAijj(τ) + aσ2
ij′λ̄ij′CAij′j(τ),

(B.32)

with the initial conditions Aijj(0) = Aijj′(0) = Cj(0) = 0, where j′ ̸= j and

λ̄ijj ≡ −αeA
2
ije −

∑
k=H,F

∫ T

0

αk(τ)Aijk(τ)
2dτ, (B.33)

λ̄ijj′ ≡ αeAijeAij′e −
∑

k=H,F

∫ T

0

αk(τ)Aijk(τ)Aij′k(τ)dτ, (B.34)

λ̄ijC ≡ (ζe − αeCe)Aije(−1)1{j=F} +
∑

k=H,F

∫ T

0

(ζk(τ)− αk(τ)Ck(τ))Aijk(τ)dτ.

(B.35)

Proof of Proposition B.3: The first-order conditions in Section 4.2 follow from (3.12)
and (3.13) by taking Σ to be diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0. Proceeding as in the
derivation of (3.18) and using γt = βHt = βFt = 0, we find

λijt = aσ2
ij

(
[ζe − αe (AiHeiHt − AiFeiFt + Ce)]Aije(−1)1{j=F}

+
∑

j′=H,F

∫ T

0

[ζj′(τ)− αj′(τ) (AiHj′(τ)iHt + AiF j′(τ)iFt + Cj′(τ))]Aijj′(τ)dτ

)
≡ aσ2

ij

(
λ̄ijjijt + λ̄ijj′ij′t + λ̄ijC

)
. (B.36)

Since (Γ,Σ) are diagonal with Σ3,3 = Σ4,4 = Σ5,5 = 0 and βHt = βFt = γt = 0, we can
write (3.8) and (3.10) as

µ
(τ)
jt ≡A′

iHj(τ)iHt + A′
iF j(τ)iFt + C ′

j(τ)− AiHj(τ)κiH(iH − iHt)− AiF j(τ)κiF (iF − iFt)

+
1

2
AiHj(τ)

(
AiHj(τ) + 2AiHe1{j=F}

)
σ2
iH +

1

2
AiF j(τ)

(
AiF j(τ)− 1{j=F}2AiFe

)
σ2
iF .

(B.37)

Substituting λt from (B.36) and µet from (B.5) into (3.12) (for the definitions of (Ae, λt)

in Section 4.2), we find an equation that is affine in (iHt, iFt). Equation (B.28) follows by
identifying the linear terms in (iHt, iFt), and (B.29) follows by identifying the constant
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terms. Substituting λt from (B.36) and µ
(τ)
jt from (B.37) into (3.13) (for the definitions

of (Aj(τ), λt) in Section 4.2), we find an equation that is affine in (iHt, iFt). Equations
(B.30) and (B.31) follow by identifying the linear terms in (iHt, iFt), and (B.32) follows
by identifying the constant terms. Solving the system of (B.28)-(B.35) reduces to solving
a system of three nonlinear scalar equations. Indeed, taking λ̄iHH , λ̄iHF = λ̄iFH and
λ̄iFF as given, we can solve the linear scalar system (B.28) in (AiHe, AiFe), the system
(B.30) and (B.31) of two linear ODEs in (AiHH(τ), AiFH(τ)) (setting (j, j′) = (H,F )),
and the same system (B.30) and (B.31) of two linear ODEs in (AiHF (τ), AiFF (τ)) (setting
(j, j′) = (F,H)). We can then substitute back into the definitions of λ̄iHH , λ̄iHF = λ̄iFH

and λ̄iFF to derive the system of three nonlinear scalar equations. Given a solution of that
system, (B.32) determines (CH(τ), CF (τ)) uniquely, and (B.29) determines Ce uniquely if
αe > 0. If αe = 0, then a parameter restriction analogous to (B.8) must be imposed and
Ce is indeterminate. The results in Section 4.2 hold for any solution λ̄iHH , λ̄iHF = λ̄iFH

and λ̄iFF .

Proof of Proposition 4.4: We start by proving a series of lemmas.

Lemma B.1. The matrix

Mi ≡

(
κiH − aσ2

iH λ̄iHH −aσ2
iF λ̄iFH

−aσ2
iH λ̄iHF κiF − aσ2

iF λ̄iFF

)
(B.38)

has two positive eigenvalues.

Proof: The characteristic polynomial of Mi is

Π(λ) ≡
(
κiH − aσ2

iH λ̄iHH − λ
) (

κiF − aσ2
iF λ̄iFF − λ

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH . (B.39)

For λ = 0, Π(λ) takes the value

Π(0) =
(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− aσ2

iHσ
2
iF λ̄iHF λ̄iFH

> a2σ2
iHσ

2
iH

(
λ̄iHH λ̄iFF − λ̄iHF λ̄iFH

)
= a2σ2

iHσ
2
iH

[(
αeA

2
iHe +

∫ T

0

αH(τ)AiHH(τ)
2dτ +

∫ T

0

αF (τ)AiHF (τ)
2dτ

)
×
(
αeA

2
iFe +

∫ T

0

αH(τ)AiFH(τ)
2dτ +

∫ T

0

αF (τ)AiFF (τ)
2dτ

)
−
(
αeAiHeAiFe −

∫ T

0

αH(τ)AiHH(τ)AiFH(τ)dτ +

∫ T

0

αF (τ)AiHF (τ)AiFF (τ)dτ

)2
]
.

(B.40)

The second step in (B.40) follows because (κiH , κiF ) are positive and because (B.33)
implies that (λ̄iHH , λ̄iFF ) are non-positive. The third step in (B.40) follows from (B.33)
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and (B.34). The Cauchy-Schwarz inequality associated to the scalar product

X · Y ≡ αexy +

∫ T

0

αH(τ)XH(τ)YH(τ)dτ +

∫ T

0

αF (τ)XF (τ)YF (τ)dτ

where X ≡ (x,XH(τ), XF (τ)), Y ≡ (y, YH(τ), YF (τ)), (x, y) are scalars, and (XH(τ), XF (τ),

YH(τ), YF (τ)) are functions of τ , implies that (B.40) is non-negative. Hence, Π(0) > 0.
For λ = κiH−aσ2

iH λ̄iHH and λ = κiF−aσ2
iF λ̄iFF , Π(λ) takes the value −a2σ2

iHσ
2
iF λ̄iHF λ̄iFH ,

which is non-positive because (B.34) implies λ̄iHF = λ̄iFH . Since (κiH , κiF ) are positive
and (λ̄iHH , λ̄iFF ) are non-positive, κiH − aσ2

iH λ̄iHH and λ = κiF − aσ2
iF λ̄iFF are positive.

Since Π(λ) is a quadratic function of λ, is positive for λ = 0, is non-positive for two
positive values of λ, and goes to infinity when λ goes to infinity, it has two positive roots.

The matrix Mi plays an important role in the determination of (AiHe, AiFe) and
(AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)). Equation (B.28) gives rise to the linear system

Mi

(
AiHe

AiFe

)
=

(
1

1

)
. (B.41)

Since Mi has two positive eigenvalues, it is invertible, and hence (B.41) can be solved for
(AiHe, AiFe). Equations (B.30) and (B.31) give rise to the linear system(

AiHH(τ)

AiFH(τ)

)′

+Mi

(
AiHH(τ)

AiFH(τ)

)
=

(
1

0

)
(B.42)

for (j, j′) = (H,F ), and to(
AiHF (τ)

AiFF (τ)

)′

+Mi

(
AiHF (τ)

AiFF (τ)

)
=

(
0

1

)
(B.43)

for (j, j′) = (F,H). Since Mi has two positive eigenvalues, the solutions (AiHH(τ), AiFH(τ))

to (B.42) and (AiHF (τ), AiFF (τ)) to (B.43) go to finite limits when τ goes to infinity.

Lemma B.2. The normalized factor prices λ̄iHF = λ̄iFH are non-negative.

Proof: Suppose, proceeding by contradiction, that λ̄iHF = λ̄iFH are negative. The
solution to (B.41) is

AiHe =
κiF − aσ2

iF (λ̄iFF + λ̄iFH)(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

, (B.44)

AiFe =
κiH − aσ2

iH(λ̄iHH + λ̄iHF )(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

. (B.45)
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The denominator in (B.44) and (B.45) is Π(0) > 0. The numerators in (B.44) and
(B.45) are positive because (κiH , κiF ) are positive and (aλ̄iHH , aλ̄iFF , aλ̄iHF , aλ̄iFH) are
non-positive. Hence, (AiHe, AiFe) are positive.

When a = 0, (B.31) with the initial conditions AiHF (0) = AiFH(0) = 0 implies
AiHF (τ) = AiFH(τ) = 0 for all τ > 0. Since, in addition, AiHe > 0 and AiFe > 0, (B.34)
implies λ̄iHF = λ̄iFH ≥ 0, a contradiction.

When a > 0, (B.30) and (B.31) with the initial conditions AiHH(0) = AiFF (0) =

AiHF (0) = AiFH(0) = 0 imply A′
iHH(0) = A′

iFF (0) = 1 and A′
iHF (0) = A′

iFH(0) = 0.
Moreover, differentiating (B.31), we find A′′

iFH(0) = aσ2
iH λ̄iHFA

′
iHH(0) < 0 and A′′

iHF (0) =

aσ2
iF λ̄iFHA

′
iFF (0) < 0. Hence, AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) < 0 and AiFH(τ) < 0

for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{AiHH(τ

′) > 0, AiFF (τ
′) > 0, AiHF (τ

′) < 0 and AiFH(τ
′) < 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) AiHH(τ0) = 0, A′
iHH(τ0) ≤ 0, AiFF (τ0) ≥ 0, AiHF (τ0) ≤ 0 and

AiFH(τ0) ≤ 0, or (ii) AiHH(τ0) > 0, AiFF (τ0) = 0, A′
iFF (τ0) ≤ 0, AiHF (τ0) ≤ 0 and

AiFH(τ0) ≤ 0, or (iii) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) = 0, A′
iHF (τ0) ≥ 0

and AiFH(τ0) ≤ 0, or (iv) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) < 0, AiFH(τ0) = 0

and A′
iFH(τ0) ≥ 0. Case (i) yields a contradiction because (B.30) for (j, j′) = (H,F ),

AiHH(τ0) = 0, AiFH(τ0) ≤ 0 and λ̄iFH < 0 imply A′
iHH(τ0) ≥ 1. Case (ii) yields a con-

tradiction by using the same argument as in Case (i) and switching H and F . Case (iii)
yields a contradiction because (B.31) for (j, j′) = (H,F ), AiHH(τ0) > 0, AiFH(τ0) = 0

and λ̄iHF < 0 imply A′
iFH(τ0) < 0. Case (iv) yields a contradiction by using the same

argument as in Case (iii) and switching H and F . Therefore, τ0 is infinite, which means
AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) < 0 and AiFH(τ) < 0 for all τ > 0. Since, in addi-
tion, AiHe > 0 and AiFe > 0, (B.34) implies λ̄iHF = λ̄iFH ≥ 0, a contradiction. Therefore,
λ̄iHF = λ̄iFH are non-negative.

Lemma B.3. The functions AiHH(τ) and AiFF (τ) are positive for all τ > 0.

• When a > 0 and αe > 0, the functions AiHF (τ) and AiFH(τ) are positive for all
τ > 0.

• When a = 0 or αe = 0, the functions AiHF (τ) and AiFH(τ) are zero.

Proof: Consider first the case a > 0 and αe > 0. If λ̄iHF = λ̄iFH = 0, then (B.31)
with the initial conditions AiHF (0) = AiFH(0) = 0 implies AiHF (τ) = AiFH(τ) = 0 for all
τ > 0. Since, in addition, (B.44) and (B.45) imply AiHe > 0 and AiFe > 0, (B.34) implies
λ̄iHF = λ̄iFH > 0, a contradiction. Hence, Lemma B.2 implies λ̄iHF = λ̄iFH > 0.

Equations (B.30) and (B.31) with the initial conditions AiHH(0) = AiFF (0) = AiHF (0) =

AiFH(0) = 0 imply A′
iHH(0) = A′

iFF (0) = 1 and A′
iHF (0) = A′

iFH(0) = 0. More-
over, differentiating (B.31), we find A′′

iFH(0) = aσ2
iH λ̄iHFA

′
iHH(0) > 0 and A′′

iHF (0) =
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aσ2
iF λ̄iFHA

′
iFF (0) > 0. Hence, AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0

for τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{AiHH(τ

′) > 0, AiFF (τ
′) > 0, AiHF (τ

′) > 0 and AiFH(τ
′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) AiHH(τ0) = 0, A′
iHH(τ0) ≤ 0, AiFF (τ0) ≥ 0, AiHF (τ0) ≥ 0 and

AiFH(τ0) ≥ 0, or (ii) AiHH(τ0) > 0, AiFF (τ0) = 0, A′
iFF (τ0) ≤ 0, AiHF (τ0) ≥ 0 and

AiFH(τ0) ≥ 0, or (iii) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) = 0, A′
iHF (τ0) ≤ 0

and AiFH(τ0) ≥ 0, or (iv) AiHH(τ0) > 0, AiFF (τ0) > 0, AiHF (τ0) > 0, AiFH(τ0) = 0

and A′
iFH(τ0) ≤ 0. Case (i) yields a contradiction because (B.30) for (j, j′) = (H,F ),

AiHH(τ0) = 0, AiFH(τ0) ≥ 0 and λ̄iFH > 0 imply A′
iHH(τ0) ≥ 1. Case (ii) yields a con-

tradiction by using the same argument as in Case (i) and switching H and F . Case (iii)
yields a contradiction because (B.31) for (j, j′) = (H,F ), AiHH(τ0) > 0, AiFH(τ0) = 0

and λ̄iHF > 0 imply A′
iFH(τ0) > 0. Case (iv) yields a contradiction by using the same

argument as in Case (iii) and switching H and F . Therefore, τ0 is infinite, which means
AiHH(τ) > 0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0.

Consider next the case a = 0. The properties of (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ))

follow because (B.30) with the initial conditions AiHH(0) = AiFF (0) = 0 implies AiHH(τ) =

AEH
iHH(τ) ≡ 1−e−κiHτ

κiH
> 0 and AiFF (τ) = AEH

iFF (τ) ≡ 1−e−κiF τ

κiF
> 0, and (B.31) with the

initial conditions AiHF (0) = AiFH(0) = 0 implies AiHF (τ) = AiFH(τ) = 0.
Consider finally the case a > 0 and αe = 0. Suppose, proceeding by contradiction,

that λ̄iHF = λ̄iFH are positive. The argument in the case a > 0 and αe > 0 implies that
(AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) are positive for all τ > 0. Since αe = 0, (B.34)
implies λ̄iHF = λ̄iFH ≤ 0, a contradiction. Hence, Lemma B.2 implies λ̄iHF = λ̄iFH = 0.
Since λ̄iHF = λ̄iFH = 0, (B.31) with the initial conditions AiHF (0) = AiFH(0) = 0 implies
AiHF (τ) = AiFH(τ) = 0. Since AiHF (τ) = AiFH(τ) = 0, (B.30) with the initial conditions
AiHH(0) = AiFF (0) = 0 implies that (AiHH(τ), AiFF (τ)) are positive for all τ > 0.

Lemma B.4. The functions AiHH(τ) and AiFF (τ) are increasing. When a > 0 and
αe > 0, the functions AiHF (τ) and AiFH(τ) are also increasing.

Proof: Consider first the case a > 0 and αe > 0. Equations A′
iHH(0) = A′

iFF (0) = 1,
A′

iHF (0) = A′
iFH(0) = 0, A′′

iFH(0) = aσ2
iH λ̄iHFA

′
iHH(0) > 0 and A′′

iHF (0) = aσ2
iF λ̄iFHA

′
iFF (0) >

0 imply A′
iHH(τ) > 0, A′

iFF (τ) > 0, A′
iHF (τ) > 0 and A′

iFH(τ) > 0 for τ close to zero. We
define τ0 by

τ0 ≡ sup
τ
{A′

iHH(τ
′) > 0, A′

iFF (τ
′) > 0, A′

iHF (τ
′) > 0 and A′

iFH(τ
′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is finite, then (i) A′
iHH(τ0) = 0, A′′

iHH(τ0) ≤ 0, A′
iFF (τ0) ≥ 0, A′

iHF (τ0) ≥ 0 and
A′

iFH(τ0) ≥ 0, or (ii) A′
iHH(τ0) > 0, A′

iFF (τ0) = 0, A′′
iFF (τ0) ≤ 0, A′

iHF (τ0) ≥ 0 and
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AiFH(τ0)
′ ≥ 0, or (iii) A′

iHH(τ0) > 0, A′
iFF (τ0) > 0, A′

iHF (τ0) = 0, A′′
iHF (τ0) ≤ 0 and

A′
iFH(τ0) ≥ 0, or (iv) A′

iHH(τ0) > 0, A′
iFF (τ0) > 0, A′

iHF (τ0) > 0, A′
iFH(τ0) = 0 and

A′′
iFH(τ0) ≤ 0. To analyze Cases (i)-(iv), we use

A′′
ijj(τ) + κijA

′
ijj(τ) = aσ2

ijλ̄ijjA
′
ijj(τ) + aσ2

ij′λ̄ij′jA
′
ij′j(τ), (B.46)

A′′
ij′j(τ) + κij′A

′
ij′j(τ) = aσ2

ijλ̄ijj′A
′
ijj(τ) + aσ2

ij′λ̄ij′j′A
′
ij′j(τ), (B.47)

which follow from differentiating (B.30) and (B.31), respectively.
Case (i) yields a contradiction. Indeed, if A′′

iHH(τ0) = 0, then (B.46) for (j, j′) =

(H,F ), A′
iHH(τ0) = 0 and λ̄iFH > 0 imply A′

iFH(τ0) = 0. The unique solution to the
linear system of ODEs (B.46) and (B.47) for (j, j′) = (H,F ) with the initial condition
(A′

iHH(τ0), A
′
iFH(τ0)) = (0, 0) is the function that equals (0,0) for all τ . This yields a

contradiction because (A′
iHH(0), A

′
iFH(0)) = (1, 0). Hence, A′′

iHH(τ0) < 0, which combined
with (B.46) for (j, j′) = (H,F ), A′

iHH(τ0) = 0 and λ̄iFH > 0 implies A′
iFH(τ0) < 0,

again a contradiction. Case (ii) yields a contradiction by using the same argument as
in Case (i) and switching H and F . Case (iii) yields a contradiction because (B.47) for
(j, j′) = (H,F ), A′

iHH(τ0) > 0, A′
iFH(τ0) = 0 and λ̄iHF > 0 imply A′′

iFH(τ0) > 0. Case
(iv) yields a contradiction by using the same argument as in Case (iii) and switching H

and F . Therefore, τ0 is infinite, which means that (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ))

are increasing.
In the case a = 0 or αe = 0, Lemma B.3 implies AiHF (τ) = AiFH(τ) = 0. Since

AiHF (τ) = AiFH(τ) = 0, (B.30) with the initial conditions AiHH(0) = AiFF (0) = 0

implies that AiHH(τ) and AiFF (τ) are increasing.

Lemma B.5. The scalars AiHe and AiFe are positive.

Proof: Consider first the case a > 0 and αe > 0. Since λ̄iHF = λ̄iFH > 0 and AiHH(τ) >

0, AiFF (τ) > 0, AiHF (τ) > 0 and AiFH(τ) > 0 for all τ > 0 (Lemma B.3), (B.34) implies
AiHeAiFe > 0. Hence, (AiHe, AiFe) are either both positive or both negative. Suppose,
proceeding by contradiction, that they are both negative. Equations (B.44) and (B.45)
imply

κiH − aσ2
iH λ̄iHH < aσ2

iH λ̄iHF , (B.48)
κiF − aσ2

iF λ̄iFF < aσ2
iF λ̄iFH . (B.49)

Since the left-hand side in each of (B.48) and (B.49) is positive, (B.48) and (B.49) imply

Π(0) =
(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− aσ2

iHσ
2
iF λ̄iHF λ̄iFH < 0,

a contradiction. Hence, (AiHe, AiFe) are positive.
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Consider next the case a = 0. Equation (B.28) implies AiHe = AUIP
iHe ≡ 1

κHj
> 0 and

AiFe = AUIP
iFe ≡ 1

κFj
> 0. Consider finally the case αe = 0 and a > 0. Since λ̄iHF =

λ̄iFH = 0 and (λ̄iHH , λ̄iFF ) are non-positive, (B.44) and (B.45) imply that (AiHe, AiFe)

are positive.

Lemma B.6. The functions AiHH(τ)−AiHF (τ) and AiFF (τ)−AiFH(τ) are positive for
all τ > 0.

Proof: In the case a = 0 or αe = 0, the lemma follows from Lemma B.3. To prove
the lemma in the case a > 0 and αe > 0, we proceed in two steps. In Step 1, we show
that AiHH(τ)−AiHF (τ) and AiFF (τ)−AiFH(τ) are positive in the limit when τ goes to
infinity. In Step 2, we show that AiHH(τ) − AiHF (τ) and AiFF (τ) − AiFH(τ) are either
increasing in τ , or increasing and then decreasing. The lemma follows by combining these
properties with AiHH(0)− AiHF (0) = AiFF (0)− AiFH(0) = 0.

Step 1: Limit at infinity. Since the matrix M has two positive eigenvalues, the
functions (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) go to finite limits when τ goes to infinity.
These limits solve the system of equations

κijAijj(∞)− 1 = aσ2
ijλ̄ijjAijj(∞) + aσ2

ij′λ̄ij′jAij′j(∞), (B.50)
κij′Aij′j(∞) = aσ2

ijλ̄ijj′Aijj(∞) + aσ2
ij′λ̄ij′j′Aij′j(∞), (B.51)

which are derived from (B.30) and (B.31) by setting the derivatives to zero. Subtracting
(B.51) for (j, j′) = (F,H) from (B.50) for (j, j′) = (H,F ), we find

κiH(AiHH(∞)− AiHF (∞))− 1

= aσ2
iH λ̄iHH(AiHH(∞)− AiHF (∞)) + aσ2

iF λ̄iFH(AiFH(∞)− AiFF (∞)). (B.52)

Subtracting (B.51) for (j, j′) = (H,F ) from (B.50) for (j, j′) = (F,H), we similarly find

κiF (AiFF (∞)− AiFH(∞))− 1

= aσ2
iH λ̄iHF (AiHF (∞)− AiHH(∞)) + aσ2

iF λ̄iFF (AiFF (∞)− AiFH(∞)). (B.53)

The solution to the system of (B.52) and (B.53) is

AiHH(∞)− AiHF (∞) =
κiF − aσ2

iF (λ̄iFF + λ̄iFH)(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

= AiHe,

(B.54)

AiFF (∞)− AiFH(∞) =
κiH − aσ2

iH(λ̄iHH + λ̄iHF )(
κiH − aσ2

iH λ̄iHH

) (
κiF − aσ2

iF λ̄iFF

)
− a2σ2

iHσ
2
iF λ̄iHF λ̄iFH

= AiFe,

(B.55)
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where the second equality in (B.54) and (B.55) follows from (B.44) and (B.45), respec-
tively. Since (AiHe, AiFe) are positive (Lemma B.5), so are (AiHH(∞)−AiHF (∞), AiFF (∞)−
AiFH(∞)).

Step 2: Monotonicity. Equations (B.30) and (B.31) with the initial conditions
AiHH(0) = AiFF (0) = AiHF (0) = AiFH(0) = 0 imply A′

iHH(0) = A′
iFF (0) = 1 > 0 and

A′
iHF (0) = A′

iFH(0) = 0. Hence, A′
iHH(τ)− A′

iHF (τ) > 0 and A′
iFF (τ)− A′

iFH(τ) > 0 for
τ close to zero. We define τ0 by

τ0 ≡ sup
τ
{A′

iHH(τ
′)−A′

iHF (τ
′) > 0 and A′

iFF (τ
′)−A′

iFH(τ
′) > 0 for all τ ′ ∈ (0, τ)}.

If τ0 is infinity, then AiHH(τ)−AiHF (τ) and AiFF (τ)−AiFH(τ) are increasing in τ . Suppose
instead that τ0 is finite. Then, either (i) A′

iHH(τ0)−A′
iHF (τ0) = 0, A′′

iHH(τ0)−A′′
iHF (τ0) ≤ 0

and A′
iFF (τ0)− A′

iFH(τ0) ≥ 0, or (ii) A′
iHH(τ0)− A′

iHF (τ0) > 0, A′
iFF (τ0)− A′

iFH(τ0) = 0

and A′′
iFF (τ0)− A′′

iFH(τ0) ≤ 0. To analyze Cases (i) and (ii), we use

A′
iHH(τ)− A′

iHF (τ) + κiH(AiHH(τ)− AiHF (τ))− 1

= aσ2
iH λ̄iHH(AiHH(τ)− AiHF (τ)) + aσ2

iF λ̄iFH(AiFH(τ)− AiFF (τ)), (B.56)

which follows by subtracting (B.31) for (j, j′) = (F,H) from (B.50) for (j, j′) = (H,F ),
and

A′
iFF (τ)− A′

iFH(τ) + κiF (AiFF (τ)− AiFH(τ))− 1

= aσ2
iH λ̄iHF (AiHF (τ)− AiHH(τ)) + aσ2

iF λ̄iFF (AiFF (τ)− AiFH(τ)), (B.57)

which follows by subtracting (B.51) for (j, j′) = (H,F ) from (B.50) for (j, j′) = (F,H).
Differentiating (B.56) and (B.57), we find

A′′
iHH(τ)− A′′

iHF (τ) + κiH(A
′
iHH(τ)− A′

iHF (τ))

= aσ2
iH λ̄iHH(A

′
iHH(τ)− A′

iHF (τ)) + aσ2
iF λ̄iFH(A

′
iFH(τ)− A′

iFF (τ)) (B.58)

and

A′′
iFF (τ)− A′′

iFH(τ) + κiF (A
′
iFF (τ)− A′

iFH(τ))

= aσ2
iH λ̄iHF (A

′
iHF (τ)− A′

iHH(τ)) + aσ2
iF λ̄iFF (A

′
iFF (τ)− A′

iFH(τ)), (B.59)

respectively. Equations (B.58) and (B.59) are a linear system of ODEs in the functions
(A′

iHH(τ)− A′
iHF (τ), A

′
iFF (τ)− A′

iFH(τ)).
Consider first Case (i). If A′′

iHH(τ0)−A′′
iHF (τ0) = 0, then (B.58), A′

iHH(τ0)−A′
iHF (τ0) =

0 and λ̄iFH > 0 imply A′
iFF (τ0)−A′

iFH(τ0) = 0. The unique solution to the linear system
of ODEs (B.58) and (B.59) with the initial condition (A′

iHH(τ0) − A′
iHF (τ0), A

′
iFF (τ0) −
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A′
iFH(τ0)) = (0, 0) is the function that equals (0,0) for all τ . This yields a contradiction

because (A′
iHH(0)−A′

iHF (0), A
′
iFF (0)−A′

iFH(0)) = (1, 1). Hence, A′′
iHH(τ0)−A′′

iHF (τ0) < 0,
which combined with (B.58), A′

iHH(τ0)− A′
iHF (τ0) = 0 and λ̄iFH > 0 implies A′

iFF (τ0)−
A′

iFH(τ0) > 0. Since A′
iHH(τ0)− A′

iHF (τ0) = 0 and A′′
iHH(τ0)− A′′

iHF (τ0) < 0, A′
iHH(τ)−

A′
iHF (τ) < 0 for τ larger than and close to τ0. We define τ ′0 by

τ ′0 ≡ sup
τ
{A′

iHH(τ
′)−A′

iHF (τ
′) < 0 and A′

iFF (τ
′)−A′

iFH(τ
′) > 0 for all τ ′ ∈ (τ0, τ)}.

If τ ′0 is finite, then either (ia) A′
iHH(τ0) − A′

iHF (τ0) = 0, A′′
iHH(τ0) − A′′

iHF (τ0) ≥ 0 and
A′

iFF (τ0)− A′
iFH(τ0) ≥ 0, or (ib) A′

iHH(τ0)− A′
iHF (τ0) < 0, A′

iFF (τ0)− A′
iFH(τ0) = 0 and

A′′
iFF (τ0) − A′′

iFH(τ0) ≤ 0. In Case (ia), the same argument as for τ0 implies A′′
iHH(τ

′
0) −

A′′
iHF (τ

′
0) > 0, which combined with (B.58), A′

iHH(τ0) − A′
iHF (τ0) = 0 and λ̄iFH > 0

implies A′
iFF (τ

′
0)−A′

iFH(τ
′
0) < 0, a contradiction. In Case (ib), the same argument as for

τ0 implies A′′
iFF (τ

′
0)−A′′

iFH(τ
′
0) < 0, which combined with (B.59), A′

iFF (τ0)−A′
iFH(τ0) = 0

and λ̄iHF > 0 implies A′
iHH(τ

′
0)− A′

iHF (τ
′
0) > 0, a contradiction. Therefore, τ ′0 is infinite,

which means that AiFF (τ)−AiFH(τ) is increasing, and AiHH(τ)−AiHF (τ) is increasing
in (0, τ0) and decreasing in (τ0,∞).

Consider next Case (ii). A symmetric argument by switching H and F implies that
AiHH(τ) − AiHF (τ) is increasing, and AiFF (τ) − AiFH(τ) is increasing in (0, τ0) and de-
creasing in (τ0,∞).

Using Lemmas B.1-B.6, we next prove the proposition. Since (AiHe, AiFe) are positive
(Lemma B.5), (3.1) implies ∂et

∂iHt
< 0 and ∂et

∂iFt
> 0. When a > 0 and αe > 0, (B.33) implies

that (λ̄iHH , λ̄iFF ) are negative, and the proof of Lemma B.3 implies that (λ̄iHF , λ̄iFH) are
positive. Hence,

aσ2
iH λ̄iHHAiHe − aσ2

iF λ̄iFHAiFe < 0, (B.60)
aσ2

iF λ̄iFFAiFe − aσ2
iH λ̄iHFAiHe < 0. (B.61)

Equations (B.60) and (B.61) also hold when a > 0, αe = 0 and (αH(τ), αF (τ)) are
positive. This is because (B.33) again implies that (λ̄iHH , λ̄iFF ) are negative, and the
proof of Lemma B.3 implies λ̄iHF = λ̄iFH = 0. Combining (B.60) and (B.61) with (B.28),
we find AiHe <

1
κiH

≡ AUIP
iHe and AiFe <

1
κiF

≡ AUIP
iFe . Combining (B.60) and (B.61) with

(3.12) (for the definitions of (Ae, λt) in Section 4.2) and (B.36), we find ∂(µet+iFt−iHt)
∂iHt

< 0

and ∂(µet+iFt−iHt)
∂iFt

> 0. This establishes the first bullet point of the proposition.
Since (AiHH(τ), AiFF (τ)) are positive for all τ > 0 (Lemma B.3), (2.1) and (3.2)

imply that (
∂y

(τ)
Ht

∂iHt
,
∂y

(τ)
Ft

∂iFt
) are positive. When a > 0 and αe > 0, Lemma B.3 implies that

(AiHF (τ), AiFH(τ)) are positive for all τ > 0, and Lemma B.4 implies that (AiHF (τ), AiFH(τ))
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are increasing. Equation (B.31) for (j, j′) = (H,F ) implies

aσ2
iH λ̄iHFAiHH(τ) + aσ2

iF λ̄iFFAiFH(τ) > 0. (B.62)

Multiplying both sides of (B.62) by λ̄iHH

λ̄iHF
< 0, we find

aσ2
iH λ̄iHHAiHH(τ) + aσ2

iF

λ̄iHH λ̄iFF

λ̄iHF

AiFH(τ) < 0

⇒ aσ2
iH λ̄iHHAiHH(τ) + aσ2

iF λ̄iFHAiFH(τ) < 0, (B.63)

where the second step follows from AiFH(τ) > 0 and from the inequality λ̄iHH λ̄iFF −
λ̄iHF λ̄iFH < 0 established in the proof of Lemma B.1. We likewise find

aσ2
iF λ̄iFHAiFF (τ) + aσ2

iH λ̄iHHAiHF (τ) > 0, (B.64)
⇒ aσ2

iF λ̄iFFAiFF (τ) + aσ2
iH λ̄iHFAiHF (τ) < 0, (B.65)

by switching H and F . Equations (B.63) and (B.65) hold also when a > 0, αe = 0 and
(αH(τ), αF (τ)) are positive. Indeed, the proof of Lemma B.3 implies λ̄iHF = λ̄iFH = 0,
and since (AiHH(τ), AiFF (τ)) are positive, (B.33) implies that (λ̄iHH , λ̄iFF ) are negative.
Combining (B.63) and (B.65) with (B.30), we find AiHH(τ) < 1−e−κiHτ

κiH
≡ AEH

iHH(τ) and
AiFF (τ) <

1−e−κiF τ

κiF
≡ AEH

iFF (τ). Combining (B.63) and (B.65) with (3.13) (for the defini-

tions of (Aj(τ), λt) in Section 4.2) and (B.36), we find
∂
(
µ
(τ)
Ht−iHt

)
∂iHt

< 0 and
∂
(
µ
(τ)
Ft −iFt

)
∂iFt

< 0.
This establishes the second bullet point of the proposition.

When a > 0 and αe > 0, (AiHF (τ), AiFH(τ)) are positive for all τ > 0, and hence (2.1)
and (3.2) imply that (

∂y
(τ)
Ht

∂iFt
,
∂y

(τ)
Ft

∂iHt
) are positive. Moreover, combining (B.62) and (B.64)

with (3.13) and (B.36), we find
∂
(
µ
(τ)
Ht−iHt

)
∂iFt

> 0 and
∂
(
µ
(τ)
Ft −iFt

)
∂iHt

> 0. This establishes the
third bullet point of the proposition. The fourth bullet point follows from Lemma B.6,
(2.1) and (3.2).

Proof of Proposition 4.5: Combining (3.12) and (3.13) (for the definitions of (Ae, Aj(τ), λt)

in Section 4.2) with (4.5), we can write the expected return of the hybrid CCT as

µ
(τ)
hCCTt ≡ λiHt(AiHe +AiFH(τ)−AiHH(τ))−λiF t(AiFe +AiHF (τ)−AiFF (τ)). (B.66)
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Using (B.36), we find

∂µ
(τ)
hCCTt

∂iHt

= aσ2
iH λ̄iHH(AiHe + AiHF (τ)− AiHH(τ))− aσ2

iF λ̄iFH(AiFe + AiFH(τ)− AiFF (τ)),

(B.67)

∂µ
(τ)
hCCTt

∂iFt

= aσ2
iH λ̄iHF (AiHe + AiHF (τ)− AiHH(τ))− aσ2

iF λ̄iFF (AiFe + AiFH(τ)− AiFF (τ)).

(B.68)

When a > 0, and αe > 0 or αj(τ) > 0, (λ̄iHH , λ̄iFF ) are negative. Since, in addi-
tion, (λ̄iHF , λ̄iFH) are non-negative, (AiHe, AiFe) are positive and AiHH(0) − AiHF (0) =

AiFF (0)−AiFH(0) = 0, (B.67) and (B.68) imply that there exists a threshold τ ∗ > 0 such
that ∂µ

(τ)
hCCTt

∂iHt
< 0 and ∂µ

(τ)
hCCTt

∂iFt
> 0 for all τ ∈ (0, τ ∗). Since at least one of (AiHH(τ) −

AiHF (τ), AiFF (τ) − AiFH(τ)) is increasing (proof of Lemma B.4), they are both increas-
ing when countries are symmetric. Since, in addition, (AiHH(∞)−AiHF (∞), AiFF (∞)−
AiFH(∞)) = (AiHe, AiFe) (proof of Lemma B.6), (B.67) and (B.68) imply that when
countries are symmetric, ∂µ

(τ)
hCCTt

∂iHt
< 0 and ∂µ

(τ)
hCCTt

∂iFt
> 0 for all τ > 0, which means τ ∗ = ∞.

Combining

µCCTt ≡ µet + iFt − iHt = λiHtAiHe − λiF tAiFe,

which gives the expected return of the basic CCT and follows from (3.12) (for the defini-
tions of (Ae, λt) in Section 4.2), with (B.36), (B.67) and (B.68), we find

∂
(
µ
(τ)
hCCTt − µCCTt

)
∂iHt

= λ̄iHH(AiHF (τ)− AiHH(τ))− λ̄iHF (AiFH(τ)− AiFF (τ)) > 0,

(B.69)

∂
(
µ
(τ)
hCCTt − µCCTt

)
∂iFt

= λ̄iFH(AiHF (τ)− AiHH(τ))− λ̄iFF (AiFH(τ)− AiFF (τ)) < 0,

(B.70)

where the inequalities follow because (λ̄iHH , λ̄iFF ) are negative, (λ̄iHF , λ̄iFH) are non-
negative, and (AiHH(τ)−AiHF (τ), AiFF (τ)−AiFH(τ)) are positive for all τ > 0 (Lemma
B.6). Hence, the sensitivity of the hybrid CCT’s expected return to (iHt, iFt) is smaller
(less negative in the case of iHt and less positive in the case of iFt) than for the basic
CCT. Since (AiHH(∞)− AiHF (∞), AiFF (∞)− AiFH(∞)) = (AiHe, AiFe), (B.66) implies
that µ

(τ)
hCCTt goes to zero when τ goes to infinity.

Using (3.1), (3.2), (4.6) and γt = βHt = βFt = 0, we can write the return of the
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long-horizon CCT as

AiHeiHt − AiFeiFt + Ce + (πF − πH)t− (AiHeiH,t+τ − AiFeiF,t+τ + Ce + (πF − πH)(t+ τ))

+ AiFF (τ)iFt + AiHF (τ)iHt + CF (τ)− (AiHH(τ)iHt + AiFH(τ)iFt + CH(τ)) .

Hence, (4.1) implies that the annualized expected return of the long-horizon CCT is

µ
(τ)
ℓCCTt ≡

1

τ

[
AiHe(1− e−κiHτ )(iHt − iH)− AiFe(1− e−κiF τ )(iFt − iF )− (πF − πH)τ

+ AiFF (τ)iFt + AiHF (τ)iHt + CF (τ)− (AiHH(τ)iHt + AiFH(τ)iFt + CH(τ))
]
,

(B.71)

and its sensitivity to (iHt, iFt) is

∂µ
(τ)
ℓCCTt

∂iHt

=
1

τ

[
AiHe(1− e−κiHτ ) + AiHF (τ)− AiHH(τ)

]
, (B.72)

∂µ
(τ)
ℓCCTt

∂iFt

=
1

τ

[
−AiFe(1− e−κiF τ ) + AiFF (τ)− AiFe(τ)

]
. (B.73)

When a > 0, and αe > 0 or αj(τ) > 0, AiHe < 1
κiH

and AiFe < 1
κiF

. Since, in addition,
A′

iHH(0) = A′
iFF (0) = 1 and A′

iHF (0) = A′
iFH(0) = 0, the derivative of (B.72) with

respect to τ at τ = 0 is negative, and the derivative of (B.73) with respect to τ at
τ = 0 is positive. Hence, there exists a threshold τ ∗ > 0 such that ∂µ

(τ)
ℓCCTt

∂iHt
< 0 and

∂µ
(τ)
ℓCCTt

∂iFt
> 0 for all τ ∈ (0, τ ∗). When countries are symmetric, we set κr ≡ κiH = κiF ,

σr ≡ σiH = σiF , Aie ≡ AiHe = AiFe, ∆A(τ) ≡ AiHH(τ)− AiHF (τ) = AiFF (τ)− AiFH(τ),
∆λ̄ ≡ λ̄iHH − λ̄iHF = λ̄iFF − λ̄iFH < 0. Taking the difference between (B.30) and (B.31)
yields

∆A′(τ) + κr∆A(τ)− 1 = aσ2
r∆λ̄∆A(τ),

which integrates to

∆A(τ) = Aie

(
1− e−(κr−aσ2

r∆λ̄)τ
)

since ∆A(0) = 0 and ∆A(∞) = Aie. Substituting into (B.72) and (B.73), we find

∂µ
(τ)
ℓCCTt

∂iHt

= −∂µ
(τ)
ℓCCTt

∂iFt

=
1

τ
Aie(e

−(κr−aσ2
r∆λ̄)τ − e−κrτ ) < 0. (B.74)

Hence, τ ∗ = ∞.
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The annualized expected return of the sequence of basic CCTs is

µ
(τ)
CCTt ≡

1

τ
Et

∫ t+τ

t

(λiHt′AiHe − λiF t′AiFe) dt
′.

Using (4.1) and (B.36), we find

∂µ
(τ)
CCTt

∂iHt

=
1− e−κiHτ

κiHτ

(
aσ2

iH λ̄iHHAiHe − aσ2
iF λ̄iFHAiFe

)
=

1− e−κiHτ

κiHτ
(κiHAiHe − 1), (B.75)

where the second step follows from (B.28). We likewise find

∂µ
(τ)
CCTt

∂iFt

= −1− e−κiF τ

κiF τ
(κiFAiFe − 1). (B.76)

Combining (B.72) and (B.75), we find

∂
(
µ
(τ)
ℓCCTt − µ

(τ)
CCTt

)
∂iHt

=
1

τ

[
1− e−κiHτ

κiH

+ AiHF (τ)− AiHH(τ)

]
> 0,

where the inequality sign follows from (B.56) by noting that the left-hand side of (B.56)
is negative. Combining (B.73) and (B.76), we likewise find

∂
(
µ
(τ)
ℓCCTt − µ

(τ)
CCTt

)
∂iFt

=
1

τ

[
−1− e−κiF τ

κiF

+ AiFF (τ)− AiFH(τ)

]
< 0.

Hence, the sensitivity of the long-horizon CCT’s expected return to (iHt, iFt) is smaller
(less negative in the case of iHt and less positive in the case of iFt) than for the corre-
sponding sequence of basic CCTs. Since (AiHH(τ), AiFF (τ), AiHF (τ), AiFH(τ)) go to finite
limits when τ goes to infinity, (B.71) implies that µ

(τ)
ℓCCTt goes to

lim
τ→∞

CF (τ)

τ
− lim

τ→∞

CH(τ)

τ
− (πF − πH)

= κiF iF (AiFF (∞)− AiFH(∞))− κiHiH (AiHH(∞)− AiHF (∞))

− 1

2
σ2
iF

[
AiFF (∞) (AiFF (∞)− 2AiFe)− AiFH(∞)2

]
+

1

2
σ2
iH

[
AiHH(∞)2 − AiHF (∞) (AiHF (∞) + 2AiHe)

]
+ aσ2

iF λ̄iFC (AiFF (∞)− AiFH(∞))− aσ2
iH λ̄iHC (AiHH(∞)− AiHF (∞))− (πF − πH)

= κiF iFAiFe − κiHiHAiHe +
1

2
σ2
iFA

2
iFe +

1

2
σ2
iHA

2
iHe

+ aσ2
iF λ̄iFCAiFe − aσ2

iH λ̄iHCAiHe − (πF − πH) = 0,
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where the second step follows from (B.32) by noting limτ→∞
Cj(τ)

τ
= limτ→∞ C ′

j(τ), the
third step follows from (AiHH(∞)−AiHF (∞), AiFF (∞)−AiFH(∞)) = (AiHe, AiFe), and
the fourth step follows from (B.29). Since

lim
τ→∞

CF (τ)

τ
− lim

τ→∞

CH(τ)

τ
− (πF − πH) = y

(∞)
F − y

(∞)
H − (πF − πH),

the difference in real yields across countries becomes zero in the limit τ goes to infinity.

We next prove a lemma that we use in subsequent proofs.

Lemma B.7. When a > 0 and αe > 0, the functions
(

AiFH(τ)
AiHH(τ)

, AiHF (τ)
AiFF (τ)

)
are increasing.

Proof: The functions (AiHH(τ), AiFH(τ)) solve the system (B.42) of linear ODEs with
constant coefficients. The solution is an affine function of (e−ν1τ , e−ν2τ ), where (ν1, ν2)

are the eigenvalues of the matrix M . Because of the initial conditions AiHH(0) =

AiFH(0) = 0, we can write the solution as a linear function of
(

1−e−ν1τ

ν1
, 1−e−ν2τ

ν2

)
. Be-

cause (A′
iHH(0), A

′
iFH(0)) = (1, 0), the coefficients of the linear terms sum to one for

AiHH(τ) and to zero for AiFH(τ). Hence, we can write the solution as

AiHH(τ) =
1− e−ν1τ

ν1
+ ϕHH

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (B.77)

AiFH(τ) = ϕFH

(
1− e−ν2τ

ν2
− 1− e−ν1τ

ν1

)
, (B.78)

for scalars (ϕHH , ϕFH). The eigenvalues (ν1, ν2) are positive (Lemma B.1), and without
loss of generality we can set ν1 > ν2. Since AiFH(τ) is positive when a > 0 and αe > 0

(Lemma B.3), ϕFH > 0. Since

AiHH(τ)

AiFH(τ)
=

1−e−ν1τ

ν1

ϕFH

(
1−e−ν2τ

ν2
− 1−e−ν1τ

ν1

) +
ϕHH

ϕFH

=
1

ϕHF

(
ν1
ν2

1−e−ν2τ

1−e−ν1τ
− 1
) +

ϕHH

ϕFH

,

and the function (ν1, ν2, τ) −→ 1−e−ν2τ

1−e−ν1τ
increases in τ because its derivative has the same

sign as eν1τ−1
ν1

− eν2τ−1
ν2

, the function AiHH(τ)
AFH(τ)

is decreasing. Hence, the inverse function
AiFH(τ)
AHH(τ)

is increasing. A similar argument using (B.43) establishes that AiHF (τ)
AFF (τ)

is increas-
ing.

Proof of Proposition 4.6: Consider a one-off increase in γt at time zero, and denote
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by κγ the rate at which γt reverts to its mean of zero. Equation (B.36) is modified to

λijt = aσ2
ij

(
[ζe + θeγt − αe (AiHeiHt − AiFeiFt + Aγeγt + Ce)]Aije(−1)1{j=F}

+
∑

j′=H,F

∫ T

0

[ζj′(τ)− αj′(τ) (AiHj′(τ)iHt + AiF j′(τ)iFt + Aγj′(τ)γt + Cj′(τ))]Aijj′(τ)dτ

)
≡ aσ2

ij

(
λ̄ijjijt + λ̄ijj′ij′t + λ̄ijγγt + λ̄ijC

)
(B.79)

(B.5) is modified to (B.20), and (3.8) and (3.10) are modified to

µ
(τ)
jt ≡A′

iHj(τ)iHt + A′
iF j(τ)iFt + A′

γj(τ)γt + C ′
j(τ)

− AiHj(τ)κiH(iH − iHt)− AiF j(τ)κiF (iF − iFt) + Aγj(τ)κγγt

+
1

2
AiHj(τ)

(
AiHj(τ) + 2AiHe1{j=F}

)
σ2
iH +

1

2
AiF j(τ)

(
AiF j(τ)− 1{j=F}2AiFe

)
σ2
iF .

(B.80)

Substituting λt from (B.79) and µet from (B.20) into (3.12) (for the definitions of (Ae, λt)

in Section 4.2), we find an equation that is affine in (iHt, iFt, γt). Identifying the linear
terms in γt yields

κγAγe = aσ2
iH λ̄iHγAiHe − aσ2

iF λ̄iFγAiFe. (B.81)

Substituting λt from (B.79) and µ
(τ)
jt from (B.80) into (3.13) (for the definitions of (Aj(τ), λt)

in Section 4.2), we find an equation that is affine in (iHt, iFt, γt). Identifying the linear
terms in γt yields

A′
γj(τ) + κγAγj(τ) = aσ2

iH λ̄iHγAiHj(τ) + aσ2
iF λ̄iFγAiF j(τ). (B.82)

Solving (B.82) with the initial condition Aγj(0) = 0, we find

Aγj(τ) = aσ2
iH λ̄iHγ

∫ τ

0

AiHj(τ
′)e−κγ(τ−τ ′)dτ ′+aσ2

iF λ̄iFγ

∫ τ

0

AiF j(τ
′)e−κγ(τ−τ ′)dτ ′, (B.83)

We next substitute Aγe from (B.81) and {Aγj(τ)}j=H,F from (B.83) into

λ̄ijγ ≡ (θe−αeAγe)Aije(−1)1{j=F}−
∫ T

0

αH(τ)AγH(τ)AijH(τ)dτ−
∫ T

0

αF (τ)AγF (τ)AijF (τ)dτ,

(B.84)
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which follows from the definition of λ̄ijγ in (B.79). We find

(1 + aσ2
iHzγHH)λ̄iHγ + aσ2

iF zγFH λ̄iFγ = θeAiHe, (B.85)
aσ2

iHzγHF λ̄iHγ + (1 + aσ2
iF zγFF )λ̄iFγ = −θeAiFe, (B.86)

where

zγHH =
αe

κγ

A2
iHe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiHF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

zγFF =
αe

κγ

A2
iFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiFF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

zγHF = −αe

κγ

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiHF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

zγFH = −αe

κγ

AiHeAiFe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiFF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ.

Equations (B.85) and (B.86) form a linear system of two equations in the two unknowns
(λ̄iHγ , λ̄iFγ). Its solution is

λ̄iHγ =
θe
∆zγ

[
(1 + aσ2

iF zγFF )AiHe + aσ2
iF zγFHAiFe

]
(B.87)

λ̄iFγ = − θe
∆zγ

[
(1 + aσ2

iHzγHH)AiFe + aσ2
iHzγHFAiHe

]
, (B.88)

where

∆zγ ≡ (1 + aσ2
iHzγHH)(1 + aσ2

iF zγFF )− a2σ2
iHσ

2
iF zγHF zγFH .

To complete the proof, we proceed in three steps. In Step 1, we show that ∆zγ is
positive. In Step 2, we show that Aγe is positive. This proves the first statement in the
proposition. In Step 3, we show that AγH(τ) is positive and AγF (τ) is negative. This
proves the second and third statements in the proposition.

Step 1: ∆zγ is positive. Since (zγHH , zγFF ) are non-negative, ∆zγ > 0 under the
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sufficient condition

zγHHzγFF ≥ zγHF zγFH . (B.89)

The function

F (µ) ≡ zγHH + µ(zγHF + zγFH) + µ2zγFF

=
αe

κγ

(AiHe − µAiFe)
2

+

∫ T

0

αH(τ) [AiHH(τ) + µAiFH(τ)]

[∫ T

0

[AiHH(τ) + µAiFH(τ)] e
−κγ(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ) [AiHF (τ) + µAiFF (τ)]

[∫ T

0

[AiHF (τ) + µAiFF (τ)] e
−κγ(τ−τ ′)dτ ′

]
dτ

is non-negative for all µ if

F0 ≡
∫ T

0

α(τ)A(τ)

[∫ τ

0

A(τ ′)e−κγ(τ−τ ′)dτ ′
]
dτ

is non-negative for a non-negative and non-increasing α(τ). Since

F0 =

∫ T

0

ϕ(τ)Φ(τ)

[∫ τ

0

Φ(τ ′)dτ ′
]
dτ,

where

ϕ(τ) ≡ α(τ)e−2κγτ ,

Φ(τ) ≡ A(τ)eκγτ ,

integration by parts implies

F0 =
1

2
ϕ(T )

[∫ T

0

Φ(τ)dτ

]2
− 1

2

∫ T

0

ϕ′(τ)

[∫ τ

0

Φ(τ ′)dτ ′
]2

dτ. (B.90)

The first term in the right-hand side of (B.90) is non-negative because α(τ) is non-negative,
and the first term is non-positive because α(τ) is non-increasing. Therefore, F0 is non-
negative. Since F (µ) is quadratic in µ, its non-negativity for all µ implies

4zγHHzγFF ≥ (zγHF + zγFH)
2

⇒ zγHHzγFF ≥ 1

4
(zγHF + zγFH)

2 = zγHF zγFH +
1

4
(zγHF − zγFH)

2 ≥ zγHF zγFH .

Therefore, (B.89) holds.
Step 2: Aγe(τ) is positive. Substituting (λ̄iHγ, λ̄iFγ) from (B.87) and (B.88) into
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(B.81), and using the definitions of (zγHH , zγFF , zγHF , zγFH) and that (θe,∆zγ) are posi-
tive, we find Aγe > 0 if

ZγHAiHe + ZγFAiFe > 0, (B.91)

where

ZγH ≡ σ2
iH(1 + aσ2

iF zγFF )AiHe + aσ2
iHσ

2
iF zγFHAiFe

= σ2
iHAiHe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

[∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

[∫ τ

0

AiFF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ,

ZγF ≡ σ2
iF (1 + aσ2

iHzγHH)AiFe + aσ2
iHσ

2
iF zγHFAiHe

= σ2
iFAiFe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

[∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

[∫ τ

0

AiHF (τ
′)e−κγ(τ−τ ′)dτ ′

]
dτ.

Since (AiHe, AiFe, ZγH , ZγF ) are positive, (B.91) holds.
Step 3: AγH(τ) is positive and AγF (τ) is negative. We prove that AγH(τ) is

positive. The proof that AγF (τ) is negative is symmetric. Substituting (λ̄iHγ, λ̄iFγ) from
(B.87) and (B.88) into (B.83) for j = H, and using the definitions of (zγHH , zγFF , zγHF , zγFH)

and that (θe,∆zγ) are positive, we find AγH(τ) > 0 if

ZγH

∫ τ

0

AiHH(τ
′)e−κγ(τ−τ ′)dτ ′ − ZγF

∫ τ

0

AiFH(τ
′)e−κγ(τ−τ ′)dτ ′ > 0. (B.92)

Since (AiHH(τ), ZγH , ZγF ) are positive, AiFH(τ) is non-negative and AiFH(τ)
AiHH(τ)

is non-decreasing,
(B.92) holds under the sufficient condition

ZγHAiHH(∞)− ZγFAiFH(∞) > 0. (B.93)
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Using the definitions of (ZγH , ZγF ), we can write (B.93) as

σ2
iHAiHeAiHH(∞)− σ2

iFAiFeAiFH(∞)

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

×
[∫ τ

0

[AiFH(τ
′)AiHH(∞)− AiHH(τ

′)AiFH(∞)] e−κγ(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

×
[∫ τ

0

[AiFF (τ
′)AiHH(∞)− AiHF (τ

′)AiFH(∞)] e−κγ(τ−τ ′)dτ ′
]
dτ > 0. (B.94)

Equation (B.31) for (j, j′) = (H,F ) implies

AiFH(τ) =
aσ2

iH λ̄iHFAiHH(τ)

κiF − aσ2
iF λ̄iFF

− A′
iFH(τ)

κiF − aσ2
iF λ̄iFF

, (B.95)

which for τ = ∞ becomes

AiFH(∞) =
aσ2

iH λ̄iHFAiHH(∞)

κiF − aσ2
iF λ̄iFF

. (B.96)

Equation (B.30) for (j, j′) = (F,H) implies

AiFF (τ) =
aσ2

iH λ̄iHFAiHF (τ)

κiF − aσ2
iF λ̄iFF

+
1− A′

iFF (τ)

κiF − aσ2
iF λ̄iFF

. (B.97)

Using (B.95)-(B.97) to simplify the terms in the first, second and fourth lines of (B.94),
and dividing throughout by aσ2

iHσ2
iFAiHH(∞)

κiF−aσ2
iF λ̄iFF

> 0, we find that (B.94) is equivalent to

(
κiF

aσ2
iF

− λ̄iFF

)
AiHe − λ̄iHFAiFe

−
∫ T

0

αH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]

[∫ τ

0

A′
iFH(τ

′)e−κγ(τ−τ ′)dτ ′
]
dτ

+

∫ T

0

αF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]

[∫ τ

0

(1− A′
iFF (τ

′))e−κγ(τ−τ ′)dτ ′
]
dτ > 0.

(B.98)
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Equations (B.33) and (B.34) imply

− λ̄iFFAiHe − λ̄iHFAiFe

=

∫ T

0

αH(τ)AiFH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]dτ

+

∫ T

0

αF (τ)AiFF (τ)[AiHeAiFF (τ) + AiFeAiHF (τ)]dτ. (B.99)

We next substitute (B.99) into (B.98). Noting that 1− A′
iFF (τ) > 0, which follows from

(B.30) for (j, j′) = (F,H) and (B.65), and that (AiHH(τ), AiFF (τ), AiHe, AiFe) are positive
and (AiHF (τ), AiFH(τ)) are non-negative, we find that (B.98) holds under the sufficient
condition∫ T

0

αH(τ)[AiHeAiFH(τ)+AiFeAiHH(τ)]

[
AFH(τ)−

∫ τ

0

A′
iFH(τ

′)e−κγ(τ−τ ′)dτ ′
]
dτ ≥ 0,

which, in turn, holds because

AiFH(τ)−
∫ τ

0

A′
iFH(τ)e

−κγ(τ−τ ′)dτ ′ ≥ AiFH(τ)−
∫ τ

0

A′
iFH(τ

′)dτ ′ = AiFH(0) = 0.

Proof of Proposition 4.7: We prove the proposition in the case j = H. The proof for
the case j = F is symmetric. Consider a one-off increase in βHt at time zero, and denote
by κβH the rate at which βHt reverts to its mean of zero. The counterparts of (B.81) and
(B.83) are

κβHAβHe = aσ2
iH λ̄iHβAiHe − aσ2

iF λ̄iFβAiFe, (B.100)

AβHj(τ) = aσ2
iH λ̄iHβ

∫ τ

0

AiHj(τ
′)e−κβH(τ−τ ′)dτ ′ + aσ2

iF λ̄iFβ

∫ τ

0

AiF j(τ
′)e−κβH(τ−τ ′)dτ,

(B.101)

where

λ̄ijβ ≡ −αeAγeAije(−1)1{j=F}

+

∫ T

0

[θH(τ)− αH(τ)AβHH(τ)]AijH(τ)dτ −
∫ T

0

αF (τ)AβHF (τ)AijF (τ)dτ

(B.102)
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is the counterpart of (B.84). The counterparts of (B.85) and (B.86) are

(1 + aσ2
iHzβHH)λ̄iHβ + aσ2

iF zβFH λ̄iFβ =

∫ T

0

θH(τ)AiHH(τ)dτ, (B.103)

aσ2
iHzβHF λ̄iHβ + (1 + aσ2

iF zβFF )λ̄iFβ =

∫ T

0

θH(τ)AiFH(τ)dτ, (B.104)

respectively, where

zβHH =
αe

κβH

A2
iHe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiHH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiHF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ,

zβFF =
αe

κβH

A2
iFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiFH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiFF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ,

zβHF = − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiHH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiHF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ,

zβFH = − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

AiFH(τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

AiFF (τ
′)e−κβH(τ−τ ′)dτ ′

]
dτ.

The solution to the linear system of (B.85) and (B.86) is

λ̄iHβ =
1

∆zβ

[
(1 + aσ2

iF zβFF )

∫ T

0

θH(τ)AiHH(τ)dτ − aσ2
iF zβFH

∫ T

0

θH(τ)AiFH(τ)dτ

]
,

(B.105)

λ̄iFβ =
1

∆zβ

[
(1 + aσ2

iHzβHH)

∫ T

0

θH(τ)AiFH(τ)dτ − aσ2
iHzβHF

∫ T

0

θH(τ)AiHH(τ)dτ

]
,

(B.106)

where

∆zβ ≡ (1 + aσ2
iHzβHH)(1 + aσ2

iF zβFF )− a2σ2
iHσ

2
iF zβHF zβFH .

The same argument as in the proof of Proposition 4.6 implies ∆zβ > 0.
To complete the proof, we proceed in three steps. In Step 1, we show that (zβHF , zβFH)
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are non-positive, and are zero when αe = 0. In Step 2, we show that AβHH(τ) is positive,
and that AβHF (τ) is positive when αe > 0 and zero when αe = 0. This proves the first
and second statements in the proposition. In Step 3, we show that AβHe is positive. This
proves the third statement in the proposition.

Step 1: (zβHF , zβFH) are non-positive, and are zero when αe = 0. Since Lemma
B.3 implies that AiFH(τ) is non-negative and AiFF (τ) is positive, and Lemma B.4 implies
that AiHH(τ) is increasing and AiHF (τ) is non-decreasing,

zβHF ≤ − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

AiHH(τ)e
−κβH(τ−τ ′)dτ ′

]
dτ

+

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

AiHF (τ)e
−κβH(τ−τ ′)dτ ′

]
dτ

≤ − αe

κβH

AiHeAiFe +

∫ T

0

αH(τ)AiFH(τ)
AiHH(τ)

κβH

dτ +

∫ T

0

αF (τ)AiFF (τ)
AiHF (τ)

κβH

= − λ̄iHF

κβH

≤ 0,

where the second step follows because (AiHH(τ), AiFF (τ)) are positive and (AiHF (τ), AiFH(τ))

are non-negative, the third step follows from (B.34), and the fourth step follows from
Lemma B.2. The inequality zβFH ≤ 0 follows similarly.

When αe = 0, Lemma B.3 implies AiHF (τ) = AiFH(τ) = 0. Therefore, zβHF = zβFH =

0.
Step 2: AβHH(τ) is positive, and AβHF (τ) is positive when αe > 0 and zero

when αe = 0. Since (∆zβ, θH(τ), AiHH(τ)) are positive, (AiFH(τ), zβFF ) are non-negative,
and zβFH ≤ 0, (B.105) implies λ̄iHβ > 0. When αe > 0, AiFH(τ) > 0. Since, in
addition, zβHH ≥ 0 and zβFH ≤ 0, (B.106) implies λ̄iFβ > 0. When αe = 0, (B.106) and
AiFH(τ) = zβHF = 0 imply λ̄iFβ = 0.

Since (λ̄iHβ, AiHH(τ)) are positive and (λ̄iFβ, AiFH(τ)) are non-negative, (B.101) im-
plies AβHH(τ) > 0. When αe > 0, AiHF (τ) > 0. Since, in addition, (λ̄iHβ, λ̄iFβ, AiFF (τ))

are positive, (B.101) implies AβHF (τ) > 0. When αe = 0, (B.101) and AiHF (τ) = λ̄iFβ = 0

imply AβHF (τ) = 0.
Step 3: AβHe is positive. Substituting (λ̄βHH , λ̄βHF ) from (B.105) and (B.106) into

(B.100), and using the definitions of (zβHH , zβHF , zβFH , zβFF ), we find AβHe > 0 if

ZβH

∫ T

0

θH(τ)AiHH(τ)dτ − ZβF

∫ T

0

θH(τ)AiFH(τ)dτ > 0, (B.107)
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where

ZβH ≡ σ2
iH(1 + aσ2

iF zβFF )AiHe + aσ2
iHσ

2
iF zβHFAiFe

= σ2
iHAiHe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)AiFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)AiFF (τ)

[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ,

ZβF ≡ σ2
iF (1 + aσ2

iHzHH)AiFe + aσ2
iHσ

2
iF zHFAiHe

= σ2
iFAiFe

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ)AiHH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ)AiHF (τ)

[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ.

Since (θH(τ), AiHH(τ)) are positive, AiFH(τ) is non-negative, and AiFH(τ)
AiHH(τ)

is non-decreasing
(increasing when a > 0 and αe > 0 from Lemma B.7, and zero when a = 0 or αe = 0),
the ratio

∫ T
0 θH(τ)AiFH(τ)dτ∫ T
0 θH(τ)AiHH(τ)dτ

is bounded above by AiFH(∞)
AiHH(∞)

. Since, in addition (ZβH , ZβF ) are
positive, (B.107) holds for all positive functions θH(τ) under the sufficient condition

ZβHAiHH(∞)− ZβFAiFH(∞) > 0. (B.108)

Using the definitions of (ZβH , ZβF ), we can write (B.108) as

σ2
iHAiHeAiHH(∞)− σ2

iFAiFeAiFH(∞)

+ aσ2
iHσ

2
iF

∫ T

0

αH(τ) [AiFH(τ)AiHH(∞)− AiHH(τ)AiFH(∞)]

×
[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+ aσ2
iHσ

2
iF

∫ T

0

αF (τ) [AiFF (τ)AiHH(∞)− AiHF (τ)AiFH(∞)]

×
[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ > 0. (B.109)

Using (B.95)-(B.97) to simplify the terms in the first, second and fourth lines of (B.109),
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and dividing throughout by aσ2
iHσ2

iFAiHH(∞)

κiF−aσ2
iF λ̄iFF

> 0, we find that (B.109) is equivalent to

(
κiF

aσ2
iF

− λ̄iFF

)
AiHe − λ̄iHFAiFe

−
∫ T

0

αH(τ)A
′
iFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ

+

∫ T

0

αF (τ)(1− A′
iFF (τ))

[∫ τ

0

[AiHeAiFF (τ
′) + AiFeAiHF (τ

′)]e−κβH(τ−τ ′)dτ ′
]
dτ > 0.

(B.110)

We next substitute (B.99) into (B.110). Noting that 1−A′
iFF (τ) > 0 and that (AiHH(τ), AiFF (τ),

AiHe, AiFe) are positive and (AiHF (τ), AiFH(τ)) are non-negative, we find that (B.110)
holds under the sufficient condition∫ T

0

αH(τ)

{
AiFH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]dτ

−A′
iFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]e−κβH(τ−τ ′)dτ ′
]}

dτ ≥ 0,

which, in turn, holds under the sufficient condition∫ T

0

αH(τ)

{
AiFH(τ)[AiHeAiFH(τ) + AiFeAiHH(τ)]dτ

−A′
iFH(τ)

[∫ τ

0

[AiHeAiFH(τ
′) + AiFeAiHH(τ

′)]dτ ′
]}

dτ ≥ 0. (B.111)

Equation (B.111) holds under the sufficient condition that the function

G(τ) ≡ AiFH(τ)∫ τ

0
[AiHeAiFH(τ ′) + AiFeAiHH(τ ′)]dτ ′

is non-increasing because the term in curly brackets in (B.111) is the negative of the
numerator of G′(τ). The function G′(τ) is non-increasing under the sufficient condition
that the function

G1(τ) ≡
A′

iFH(τ)

AiHeAiFH(τ) + AiFeAiHH(τ)

is non-increasing. Equation (B.31) for (j, j′) = (H,F ) implies

G1(τ) =
aσ2

iH λ̄iHFAiHH(τ) + (aσ2
iF λ̄iFF − κiF )AiFH(τ)

AiHeAiFH(τ) + AiFeAiHH(τ)

=
aσ2

iH λ̄iHF + (aσ2
iF λ̄iFF − κiF )

AiFH(τ)
AiHH(τ)

AiHe
AiFH(τ)
AiHH(τ)

+ AiFe

.
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Since λ̄iFH ≥ 0, λ̄iFF ≤ 0 and AiFH(τ)
AiHH(τ)

is non-decreasing, G1(τ) is non-increasing.

C Numerical Solution and Model Estimation

C.1 Numerical Solution

We derive a system of 25 nonlinear scalar equations in the elements of the 5×5 matrix M.
We adopt the exponential specification (5.1) and (5.2) for the functions {(αj(τ), θj(τ))}j=H,F ,
and set T = ∞. Using the exponential specification and T = ∞, we can compute the
integrals involving Aj(τ) in the definition (3.23) of M as Laplace transforms. The Laplace
transforms can be computed from polynomial functions of M . Computing them does not
require solving the ODE system (3.21), which would entail computing eigenvalues and
eigenvectors of M .

We define the Laplace transform

Aj(s) ≡
∫ ∞

0

Aj(τ)e
−sτdτ

of Aj(τ), and

Xj(s) ≡
∫ ∞

0

Xj(τ)e
−sτdτ

of Xj(τ) ≡ Aj(τ)Aj(τ)
⊤. Multiplying (3.21) by e−sτ , taking integrals of both sides from

zero to infinity, and using the property that the Laplace transform of A′
j(τ) is s times

that of Aj(τ) (this property follows from integration by parts), we find

(sI +M)Aj(s) =
1

s
Eij ⇒ Aj(s) =

1

s
(sI +M)−1Eij, (C.1)

where I denotes the 5× 5 identity matrix. Multiplying (3.21) from the right by Aj(τ)
⊤,

and adding to the resulting equation its transpose, we find

A′
j(τ)Aj(τ)

⊤+Aj(τ)A
′
j(τ)

⊤+MAj(τ)Aj(τ)
⊤+Aj(τ)Aj(τ)

⊤M⊤−EijAj(τ)
⊤−Aj(τ)E

⊤
j = 0.

(C.2)

Multiplying (C.2) by e−sτ , taking integrals of both sides from zero to infinity, and using
the definition of Xj(τ) and the property that the Laplace transform of X ′

j(τ) is s times
that of Xj(τ), we find(s

2
I +M

)
Xj(s) + Xj(s)

(s
2
I +M

)⊤
= EijAj(s)

⊤ +Aj(τ)E
⊤
ij. (C.3)

Equation (C.3) is a Lyapunov equation, and has a unique solution Xj(s) under the suffi-
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cient condition that the eigenvalues of s
2
I+M have positive real parts. Its solution can be

computed by solving a system of fifteen linear scalar equations (as Xj(s) is a symmetric
matrix).

Using the Laplace transforms (Aj(s),Xj(s)) and the exponential specifications (5.1)
and (5.2), we can compute the integrals involving Aj(τ) in the definition of M as follows∫ ∞

0

θj(τ)EβjAj(τ)
⊤dτ = −θj0EβjA

′
j(θj1)

⊤, (C.4)∫ ∞

0

αj(τ)Aj(τ)Aj(τ)
⊤dτ = αj0Xj(αj1). (C.5)

Deriving (C.4) requires additionally the property that the Laplace transform of τAj(τ) is
minus the derivative of that of Aj(τ). The derivative A′

j(s) can be computed as function
of Aj(s) by differentiating (C.1):

Aj(s) + (sI +M)A′
j(s) = − 1

s2
Eij ⇒ A′

j(s) = −(sI +M)−1

(
Aj(s) +

1

s2
Eij

)
. (C.6)

Using (C.4) and (C.5), together with

Ae = M−1 (EiH − EiF ) , (C.7)

which follows from (3.19), we can write (3.23) as

M ≡ Γ⊤ − a

[(
θeEγ − αeM

−1 (EiH − EiF )
)
(EiH − EiF )

⊤ (M−1
)⊤

−
∑

j=H,F

(
θj0EβjA

′
j(θj1)

⊤ + αj0Xj(αj1)
)]

ΣΣ⊤. (C.8)

The right-hand side of (C.8) is a function of M , derived from (C.1), (C.3) and (C.6).
Therefore, (C.8) forms a system of 25 nonlinear scalar equations in the 25 elements of
M . Given M , we derive Aj(τ) by solving the ODE system (3.21), and we obtain Ae from
(C.7). Given Aj(τ) and Ae, we solve for Cj(τ) and Ce from (3.20), (3.22) and (3.24).

We solve the system of 25 nonlinear scalar equations using a continuation algorithm.

• Step 0 of the algorithm solves the system for zero risk aversion a(0) = 0. The solution
is M = Γ⊤.

• Step i+ 1 of the algorithm solves the system for risk aversion a(i+1) = a(i) + s(i+1),
where a(i) is risk aversion for step i and s(i+1) is a small step size. The solution M (i)

in step i is used as initial condition for solving the system in step i+1. This ensures
that the solution in step i+1 is found quickly and is close to the solution in step i.

• The algorithm ends when a(i+1) = a.
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If there are multiple solutions for M , the continuation algorithm picks the solution
that converges to the unique solution M = Γ⊤ when risk aversion goes to zero.

C.2 Model Estimation

For each vector ρ of parameters, we solve the model numerically and compute the weighted
sum L(ρ) of squared differences between the empirical moments and their model-implied
counterparts. To compute the model-implied moments of exchange rates and bond yields,
we first compute the unconditional covariance and autocovariance of the state vector qt.
Integrating (2.8), we find

qt = q̄ +

∫ t

−∞
e−Γ(t−t′)ΣdBt′ . (C.9)

Equation (C.9) implies that the unconditional covariance of qt is

Cov(qt, q⊤t ) =
[∫ t

−∞
e−Γ(t−t′)ΣΣ⊤e−Γ⊤(t−t′)dt′

]
≡ Σ̂. (C.10)

Differentiating (C.10) with respect to t and noting that the derivative is zero, we find

ΓΣ̂ + Σ̂Γ⊤ = ΣΣ⊤, (C.11)

which is a Lyapunov equation and has a unique solution Σ̂ because the eigenvalues of Γ
have positive real parts. The unconditional autocovariance of qt is

Cov(qt, q⊤s ) =
∫ t

−∞
e−Γ(t−t′)ΣΣ⊤e−Γ⊤(s−t′)dt′

=

[∫ t

−∞
e−Γ(t−t′)ΣΣ⊤e−Γ⊤(t−t′)dt′

]
e−Γ⊤(s−t)

= Σ̂e−Γ⊤(s−t), (C.12)

for s > t, where the last step in (C.12) follows from (C.10).
Bond yields and log exchange rates in the model are affine functions of the state vector

qt. The covariance between two such affine functions Xqt + X0 and Y qs + Y0 for 1 × 5

constant vectors (X,Y ), scalars (X0, Y0), and s > t is

Cov(Xqt +X0, Y qs + Y0) = XCov(qt, q⊤s )Y ⊤. (C.13)
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C.3 Predictive Regressions

Bilson (1981) and Fama (1984) perform the regression

1

∆τ
log

(
et

et+∆τ

)
= aUIP + bUIP

(
y
(∆τ)
Ft − y

(∆τ)
Ht

)
+ et+∆τ .

The dependent variable is the rate of foreign currency depreciation over horizon ∆τ .
The independent variable is the foreign-minus-home ∆τ -year yield differential. Bilson
(1981) and Fama (1984) assume that the horizon ∆τ is short (monthly). Chinn and
Meredith (2004) perform the same regression for longer horizons. The coefficient bUIP of
this regression depends on second moments of bond yields and log exchange rates, and
can be computed as described in (C.13).

Lustig, Stathopoulos, and Verdelhan (2019) perform the regression

1

∆τ
log

(
P

(τ−∆τ)
F,t+∆τ et+∆τ

P
(τ)
Ft et

)
− 1

∆τ
log

(
P

(τ−∆τ)
H,t+∆τ

P
(τ)
Ht

)
= aLSV + bLSV

(
y
(∆τ)
Ft − y

(∆τ)
Ht

)
+ et+∆τ .

The dependent variable is the return over horizon ∆τ of the hybrid CCT constructed
using bonds with maturity τ . The independent variable is the foreign-minus-home ∆τ -
year yield differential. Since log bond prices are affine functions of the state vector qt, the
coefficient bLSV of this regression can be computed as described in (C.13).

Chernov and Creal (2020) and Lloyd and Marin (2020) perform the regression

1

∆τ
log

(
et

et+∆τ

)
= aUIPℓs+bUIPℓ

(
y
(∆τ)
Ft − y

(∆τ)
Ht

)
+bUIPs

[(
y
(τ2)
Ft − y

(τ1)
Ft

)
−
(
y
(τ2)
Ht − y

(τ1)
Ht

)]
+et+∆τ .

The dependent variable is the rate of foreign currency depreciation over horizon ∆τ .
The independent variables are the foreign-minus-home ∆τ -year yield differential and the
foreign-minus-home slope differential between years τ1 and τ2. The coefficients bUIPs and
bUIPℓ of this regression can be computed as described in (C.13).

Fama and Bliss (1987) perform the regression

1

∆τ
log

(
P

(τ−∆τ)
j,t+∆τ

P
(τ)
jt

)
− y

(∆τ)
jt = aFB + bFB

(
f
(τ−∆τ,τ)
jt − y

(∆τ)
jt

)
+ et+∆τ .

The dependent variable is the log return over horizon ∆τ of the country-j bond with
maturity τ in excess of the ∆τ -year spot rate (yield). The independent variable is the
slope of the country-j term structure as measured by the difference between the forward
rate between maturities τ −∆τ and τ , and the ∆τ -year spot rate. Since log bond prices
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are affine functions of the state vector qt, and the forward rate is

f
(τ−∆τ,τ)
jt = −

log

(
P

(τ)
jt

P
(τ−∆τ)
jt

)
∆τ

,

the coefficient bFB of this regression can be computed as described in (C.13).
Campbell and Shiller (1991) perform the regression

y
(τ−∆τ)
j,t+∆τ − y

(τ)
jt = aCS + bCS

∆τ

τ −∆τ

(
y
(τ)
jt − y

(∆τ)
jt

)
+ et+∆τ .

The dependent variable is the change over horizon ∆τ in the yield of a country-j bond
with initial maturity τ . The independent variable is the difference between the country-j
spot rates for maturities τ and ∆τ , normalized so that bCS is equal to one under the EH.
The coefficient bCS of this regression can be computed as described in (C.13).
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