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e State dependent [eg menu cost]: better micro fit, but hard to simulate

® mostly characterize IRF of nominal price to permanent nominal MC shocks
[Golosov-Lucas, Nakamura-Steinsson, ...]

This paper computes the Phillips curve for menu cost models:

— first-order mapping from {mc;} to {n¢}, captured by Jacobian J: 7 = J - mc

Properties:

1. nearly identical to (NK-PC) for some x > 0 [Alvarez-Le Bihan-Lippi, Gertler-Leahy]
2. exactly equal to mixture of two time dependent models
3. entirely recoverable from distribution of price changes  [Alvarez-Lippi-Oskolkov]
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Random menu cost model

e Discrete time, quadratic approximation to firm i’s objective function:
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P} =Pj,_,+oe €~ N(0,1) (idiosyncratic shock)

e Nominal marginal cost: MC; = log MC; — log MCss

e Random menu cost &; € {0,&}, iid across i, t, with P(¢; = 0) = A
* )\ = 0 is Golosov-Lucas (GL)
® ) € (0,1) in Nakamura-Steinsson (NS)

e Aggregate price and inflation: log Pt = [ ppdi, 7t = log Pt — log Pt_+



General time dependent model

Firm i re-adjusts according to exogenous probabilities

After s periods, cumulative adjustment prob ®s. At any date t:

Z ﬁs(bs% (Pit — Dirys — /VTCt+s>2]
S=0

min Eq
Pit

Calvo: & = (1 — \)° A (constant adjustment hazard \)

Also nests other cases (e.g. increasing adjustment hazard, Taylor)

[Whelan, Sheedy, Carvalho-Schwartzman]
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Nominal price Jacobians

e Start model in steady state, consider MIT shock to nominal cost {Aﬁs}szo

e All models boil down to mapping

Pt = Pt ({l\//lfis}) = for small shocks: i;:;g;é MC
S}

* Define JJo™ = 160 The J"°™ matrix is the nominal price Jacobian:

ﬁ:lnom.m

e column s = IRF of price level to small aggregate nominal cost shock at date s
® |RF to permanent shock: P= Jromq [Golosov-Lucas, Alvarez-Le Bihan-Lippi, ...]

® Flexible prices: J"om = |



Nominal Jacobians for time-dependent models > Closed-form

¢ Time-dependent models have closed-form solution for )™

Calvo Increasing adjustment hazards
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Phillips curve Jacobians

e What if shock hits real marginal cost mcs = I\//I\CS — ps?

e Obtain fixed point equation:

|3 _ jnom . (n/i:—i— I’;‘,) = |3 _ (| _lnom)—‘l lnom . I‘fl\C

e To get inflation 7 use first difference matrix D
T=D(1—J°") )" . mc=) mc

¢ This gives the Phillips curve Jacobian )

® sequence-space analogue of the (NK-PC)



e Calvo model:

Tt = KMCt + PB4 4

Inflation
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Visualizing ) for Calvo and general time-dependent model
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Observational equivalence




Calibration of random menu cost models

e Given ); calibrate &, o to match:
* Average frequency of price change of 23.9% quarterly (“freq”)
e Median price adjustment of 8.5%

e (regular price changes for median sector in U.S. CPI [Nakamura-Steinsson])

e Two benchmarks: A = 0 (GL) and A = 0.75 (NS)

* Note:
® only two effective parameters are \ and /02, £ then determines scale
e for convenience will reparameterize by X and freq (or duration=1/freq)



Nominal price Jacobians in our two menu cost models

Golosov-Lucas Nakamura-Steinsson
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[Fast computation with method in Auclert-Bardoczy-Rognlie-Straub]
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Measuring distance to Calvo

e These look similar to Calvo — how can we measure distance formally?

e For nominal Jacobians, find Calvo frequency A¢@lvo;

H“nom _ lnom,Calvo ()\) |||2

ez

e For Phillips curve Jacobians, find Calvo slope xcalve

__gCalvo
ccatvo _ oo i =1 (1) [l
K 131112

e Note: Two models with the same J"°™ also share the same

)\Calvo

= arg min
& A

. real Phillips curve price Jacobian )
. IRF to any shock to MC or mc

. IRF to any fundamental shock once integrated in a broader macro model
1"



Calvo approximates nominal price Jacobians

Golosov-Lucas Nakamura-Steinsson
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Phillips curve Jacobians in our two menu cost models

Golosov-Lucas Nakamura-Steinsson

1.75] M 051
150«4 e ?1//1
1.251
031
5 1.00 5
2 2
s s
£ 0.751 £ 021
0.50
0.1
0.251 L
0.001 0 L

0 15 20 25 30 35 40
Quarters

o
o1

0 5 10 15 20 25 30 35 40
Quarters

13



Calvo approximates Phillips curve Jacobians » ARshocks > Smets-Wouters

Golosov-Lucas Nakamura-Steinsson
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» AR shocks ~ » Smets-Wouters

Calvo approximates Phillips curve Jacobians

Nakamura-Steinsson
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e What's £¢@v0? Alvarez-Le-Bihan-Lippi holds approximately:
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Calvo approximates Phillips curve Jacobians
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Extensions

Arbitrary parameters — @

Steady state inflation — @

Infrequent shocks — @

Multi-product models — @

Multi-sector models — @

Large shocks — @
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Exact equivalence »E{(x)  » intuition

e So far, numerical equivalence. Anything exact?
Proposition

Any random menu cost model is equiv. to a mixture of two time-dep. models:

]nom _ Odnom,td (q)e) + (1 . a) lnom,td(d)i)

“extensive margin” “intensive margin”

e Mixture represents two adjustment margins:
® extensive margin: sS bands shift
® intensive margin: reset point p;; + MC; shifts
e Can derive expressions straight from menu cost steady state:

* based on expected future price gaps Et (x) = E [x¢|xo = X]
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Why does the Calvo approximation work?

Age distribution

Golosov-Lucas Nakamura-Steinsson
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Extensive and intensive margin offset each other.
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Generalizing the approach

e Exact equivalence even holds with general distributions for &;;

® now: mixture of many time-dep. models

e Can recover hazards and price gap distribution from data on price changes

e similar to Alvarez-Lippi-Oskolkov

e Given equivalence, can directly compute entire nominal Jacobian!

® not necessary to solve any model!
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Implied nominal and real Jacobians vs. Calvo fit

Nominal Jacobian Real Jacobian
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Conclusion




New pricing models, old Phillips curve

e We obtain the Phillips Curve of menu cost models

. observationally equivalent to Calvo (NK-PC) for a given «
. theoretically equal to mixture of time-dependent models

. easy to embed in DSGE models w/ sufficient statistics formulas
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