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David López-Salido Francesca Loria

Federal Reserve Board

September 8, 2021

Abstract

We investigate how macroeconomic drivers influence the predictive inflation distribution and

establish two key findings. First, the recent muted response of the conditional mean of infla-

tion to economic conditions does not convey a complete picture of inflation dynamics. Indeed,

we find ample variability in the tails of the inflation outlook that remains even when focusing

on the most recent period of stable and low mean inflation. Second, we document that tight

financial conditions carry substantial downside inflation risks in the United States and in the

Euro Area, a feature overlooked by much of the literature but consistent with financial amplifi-

cation mechanisms. Finally, we show that evidence from financial market quotes, from survey

data and from a regime-switching model of inflation is consistent with our findings and use our

model to track inflation risks during the Covid-19 crisis.

JEL CLASSIFICATION: C21, C53, E31, E44.

KEYWORDS: Inflation Risks, Quantile Regression.

Special thanks to Ben Bernanke, Danilo Cascaldi-Garcia, Steve Cecchetti, David Cho, Jim Clouse, Olivier Coibion,
Deepa Datta, Giovanni Favara, Felix Galbis-Reig, Ed Herbst, Paul Lengermann, Antoine Lepetit, Ed Nelson, Claudia
Pacella, Andrea Prestipino, Giorgio Primiceri, Jeremy Rudd, Tatevik Sekhposyan and Srečko Zimic as well as seminar
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“Monetary policy responded first in the summer of 2012 by acting to defuse the sovereign debt

crisis, which had evolved from a tail risk for inflation into a material threat to price stability.”

Mario Draghi, ECB President, Sintra, June 2019.1

Introduction

Since the upheavals of the global financial crisis, the emergence of downside risks to the inflation

outlook have increasingly become a source of macroeconomic concern. So far, most efforts have

been devoted to studying the factors underlying the muted response of the conditional mean of

inflation to economic and financial conditions. At the same time, much has been said on the in-

ability of labor market conditions to explain recent inflation outcomes. The Phillips curve linkages

seem to be breaking down. In this paper, we show that in the presence of tail risks, the conditional

inflation mean does not necessarily fully depict the inflation outlook, as reminded by President

Draghi’s quote.

Indeed, we show that the contrasting response of the inflation tails and median reveals a more

complete picture of the effects that real and financial shocks impinge on its outlook. Specifi-

cally, we find that there have been sizeable downside risks to the inflation outlook in the last 20

years, mainly accounted for by financial tightenings. This is consistent with the idea that, due to

amplification mechanisms, when financial conditions become tighter firms cut prices dispropor-

tionately more, on average. These concepts are related to recent research by Del Negro, Giannoni,

and Schorfheide (2015), Christiano, Eichenbaum, and Trabandt (2015), Christiano, Motto, and

Rostagno (2014) and Gilchrist, Schoenle, Sim, and Zakrajšek (2017) which shows that financial

conditions matter also for inflation dynamics. While these studies focus on the modal outlook, we

draw on their insights to study empirically the inflation tails.

Other studies already documented that looking at the entire predictive distribution of economic

1Mario Draghi, “Twenty Years of the European Central Bank’s Monetary Policy,” speech delivered at the ECB
Forum on Central Banking in Sintra on June 18th, 2019 (available at https://www.bis.org/review/r190618c.htm).
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growth can reveal additional insights into their dynamics. For instance, the deterioration in credit

market conditions led to a substantial decline in economic activity as well as a deterioration in the

odds of low growth and of high unemployment. Tight financial conditions moved the conditional

distribution of real GDP growth to the left (e.g., Adrian, Boyarchenko, and Giannone, 2019 and

Caldara, Cascaldi-Garcia, Cuba Borda, and Loria, 2020) – with its left tail being the most sensitive

to macroeconomic shocks (see Loria, Matthes, and Zhang, 2019) – and implied medium-term

upside risks to unemployment (see Kiley, 2018).

To summarize, in this paper we make three points. First, we offer evidence that some of the

macroeconomic factors covered under the “Phillips curve umbrella” – conventionally used to study

the conditional mean of inflation – are still at work in the tails. Indeed, we find ample variability

in the tails of the inflation outlook that remains even when focusing on the most recent period of

stable and low mean inflation. Second, we show that tight financial conditions carry substantial

downside risks to the inflation outlook, an aspect of inflation behavior overlooked by much of the

literature but consistent with financial amplification mechanisms. For instance, we replicate our

findings within the model by Gertler, Kiyotaki, and Prestipino (2019) - a nonlinear DSGE model

which features the possibility of a severe financial crisis. Third, we uncover that these two findings

are supported by evidence from inflation probabilities derived from financial contracts, predictive

densities from the SPF and a regime-switching model.

Our econometric strategy frames the effects of risk factors on inflation within an “augmented”

quantile Phillips curve model using data since the 1970s for the U.S. economy. That is, we extend

the standard regression analysis (e.g., Blanchard, Cerutti, and Summers, 2015) – designed to as-

certain the drivers of the conditional mean of inflation – to different inflation quantiles. This setup

allows to relate the risks to the inflation outlook to labor market slack, inflation inertia and inflation

expectations, as well as relative prices. More importantly, we extend the analysis to consider the

effect of financial conditions on the inflation distribution and on the odds of low inflation. To do

so, we construct the predictive distribution of the inflation outlook by fitting a flexible distribution

on the estimated inflation quantiles.
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We check whether probabilities of inflation falling within certain intervals, as priced by finan-

cial market quotes, are consistent with some of the conclusions about inflation risks derived from

our analysis. We show that these probabilities and the ones obtained from our quantile Phillips

curve model share a defining feature, namely that tight financial conditions are associated with

higher probabilities of low inflation and that this relationship weakens as one considers higher

inflation cutoffs. We also compare the predictive densities obtained from our quantile regression

model with those obtained from the SPF and find that they are remarkably similar.

To shed light on the interpretation and on the sources of identification of the inflation tails

coming from the quantile regression, we run a regime-switching version of our augmented Phillips

curve model. The regime-switching regression is consistent with the main findings from our quan-

tile regression approach. In particular, we show that the Phillips-curve linkages in the left, median

and upper inflation tails arising from the quantile regression are comparable to the Phillips-curve

linkages informed by regimes of low, moderate and high inflation. In terms of our main result,

we show that in regimes of low inflation, credit spreads disproportionately held down inflation as

compared to times of moderate and high inflation.

We consider the recent global financial crisis to illustrate how economic and financial head-

winds influenced the inflation outlook both in the United States and in the euro area. We show

how in the U.S., while average inflation experienced only a modest reduction despite the fall in

output triggered by the financial crisis, downside inflation risks moved considerably over this pe-

riod – mainly a reflection of soaring credit spreads during the financial meltdown. These patterns

have been less benign in the euro area, where the sovereign debt crisis triggered a more prolonged

increase in the odds of low inflation due to the more limited role of inflation expectations in coun-

teracting downside risks posed by the economic slowdown and financial distress.

Finally, we use our framework to characterize inflation risks in uncertain times. We find that

the inflation distributions implied by our model for the recent Covid-19 episode correctly display

an increase in downside inflation risks at the onset of the crisis and upside inflation risks in the

recovery.
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Related Studies Our paper speaks to the literature which studies risks to the inflation outlook.

Andrade, Ghysels, and Idier (2012) introduced the nomenclature “inflation-at-risk” when con-

structing a measure of (left and right) tail risks to inflation using survey-based density forecasts.

They also showed that the magnitude and the asymmetry of inflation risks evolves over time and

that it is not only related to purely nominal factors but also informed by financial variables, among

others. Kilian and Manganelli (2007, 2008) derive inflation risk measures from the private sec-

tor agent’s preferences with respect to inflation. In a cross-section of countries, Cecchetti (2008)

computes t-distribution approximations to deviations of log GDP and log price level from their

trend and documents that asset price booms increase both growth and inflation risks. Manzan

and Zerom (2013) find that incorporating macroeconomic variables into quantile regressions im-

proves the accuracy of inflation density forecasts. Korobilis (2017) finds that predictive densities

from a quantile regression Bayesian model averaging (QR-BMA) model are superior to and bet-

ter calibrated than those of the traditional regression BMA model and that this methodology is

competitive with popular nonlinear specifications for U.S. inflation. Galvão and Owyang (2018)

find that financial conditions have stronger effect on inflation on periods of “financial stress” in

their factor-augmented smooth-transition vector autoregressive model (FASTVAR). Ghysels, Ia-

nia, and Striaukas (2018) construct measures of inflation risk using a Quantile Autoregressive

Distributed Lag Mixed-Frequency Data Sampling (QADL-MIDAS) regression model and find that

they contain useful information about future inflation realizations. Adams, Adrian, Boyarchenko,

and Giannone (2021) construct risks around consensus forecasts of inflation, among others.

We consider our contribution to this literature as augmenting a well-understood and micro-

founded time-series framework, that of a Phillips-curve, to study the risks to the entire distribution

of the inflation outlook, coming from both conventional inflation determinants as well as financial

conditions. Moreover, we offer a comprehensive review of how evidence on the role of financial

conditions for downside risks to the inflation outlook is supported by a comparison with euro-area

results as well as alternative frameworks to measure inflation-at-risk: survey evidence, financial

market quotes, a regime-switching model and a macroeconomic model with financial panics.
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Our approach differs from, and complements, studies that define inflation risks as the chance

of lost purchasing power resulting from negative inflation-adjusted returns. These studies evalu-

ate the inflation risk premium associated with the compensation required by investors for future

expected inflation or deflation – typically using information contained in financial market quotes

(see, e.g., Boons, Duarte, de Roon, and Szymanowska, 2020 among many others). An important

departure from our approach is that, in general, they lack an explicit link of these risks to specific

macroeconomic outcomes.

Our framework has been taken as a starting point in some recent papers, who confirm our

findings that financial conditions are important determinants of inflation risks, and especially of

downside risks. Two examples are Korobilis, Landau, Musso, and Phella (2021) in the context

of both our semi-structural Phillips curve model as well as other time series models with time-

varying parameters, and Banerjee, Contreras, Mehrotra, and Zampolli (2020) in a cross-section of

advanced and emerging economies using panel quantile regressions.

Outline In Section 1 we organize ideas by presenting our theoretical framework and empirical

strategy. As time-variation emerges in the characterization of the determinants of the inflation

distribution, we illustrate subsample results in Section 2 and use them to shed new light on modern

inflation linkages. In Section 3 we show supporting evidence for our main findings coming from

financial-markets-derived inflation probabilities, survey data and a regime-switching version of

our augmented Phillips curve model. We focus on the global financial crisis and compare the

United States and euro area inflation experiences in Section 4, while also exploring the role of

financial conditions in affecting the odds of low inflation during that period. In Section 5 we

show how our model tracks inflation risks during the Covid-19 crisis. Concluding remarks, future

research avenues and policy implications are offered in Section 6. A data guide, additional material

and robustness exercises are collected in the Appendix. We refer to this appendix material either

explicitly in the main text or in footnotes.
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1 Characterizing Inflation-at-Risk

In many circumstances the study of the determinants of the conditional mean of inflation may be

sufficient to produce a good representation of the modal dynamics of inflation. In other cases,

however, studying the response of the tails of the predictive inflation distribution is essential for

providing a more complete picture. This is likely to be the case, for instance, in the presence

of large real or financial shocks, as it aids understanding the effects that these shocks have on

inflation. Because of these considerations, we extend the standard regression analysis – designed

to ascertain the drivers of the conditional mean of inflation – to the entire inflation distribution.

In this section we describe the econometric specification we use to link economic and financial

conditions with risks to the inflation outlook. We first describe conditional inflation quantiles

as a function of observed economic and financial variables (risk factors). Second, we use these

quantiles to approximate the inflation distribution. Variations in inflation risks are then measured

according to how much the tails of the inflation distribution vary with the evolution of economic

and financial factors. We refer to these “tail risks” as Inflation-at-Risk (IaR).

We frame the effects of different risk factors on inflation within an augmented quantile Phillips

curve model. This setup allows us to relate inflation risks to variations in the amount of slack in

the labor market, changes in inflation persistence, variations in inflation expectations, as well as

movements in relative prices (imported goods and/or oil). Our Phillips curve model is “augmented”

as it also incorporates financial conditions (approximated by credit spreads) as an additional factor

affecting not just the mean, but mainly the tails of the inflation distribution.

1.1 (Phillips-Curve) Quantile Regressions

Quantile regression models are a flexible tool for studying the determinants of IaR.2 Our inflation

measure of interest is the (annualized) average core CPI inflation rate over the next year (that is,

between quarter t+1 and quarter t+4, π̄t+1,t+4).3 We want to focus on quarterly inflation as this is

2For an introduction to the quantile regression methodology, see Koenker (2005).
3A similar approach is taken in Adrian, Boyarchenko, and Giannone (2019) for the average growth rate of GDP.
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typically the main frequency of interest and as it allows to abstract from noisier movements in the

monthly series. We consider a linear model for the conditional inflation quantiles whose predicted

value

Q̂τ (π̄t+1,t+4|xt) = xtβ̂τ , (1)

is a consistent linear estimator of the quantile function of π̄t+1,t+4 conditional on xt – where

τ ∈ (0, 1), xt is a 1 × k-dimensional vector of conditioning (risk) variables, and β̂τ is a k × 1-

dimensional vector of estimated quantile-specific parameters.4 Accordingly, a determinant xt may

exert non-linear effects on inflation dynamics if it affects differently the median and the tails.

Some observers might wonder about how having overlapping observations in our dependent

variable might affect our results. As discussed in Caldara et al. (2020), running a regression of

this type, is aking to a “direct” forecast, as opposed to an “iterated” forecast where the dependent

variable would be πt+1 and where one would iterate the one-step-ahead prediction to obtain multi-

horizon forecasts. As shown in that same paper, in simulation direct and iterated forecasts deliver

the same results, when they share the same linear (V)AR data-generating process. In empirical

data the direct model actually is comparable to if not better than an iterated model in terms of

coverage and correct calibration of the predictive density.5

Our model for conditional inflation quantiles extends the Phillips-curve model used in the liter-

ature. In particular, we closely follow Blanchard, Cerutti, and Summers (2015) which summarized

a vast empirical literature on inflation dynamics. Formally, the baseline quantile regression model

in (1) can be written as an augmented Phillips curve model:

Q̂τ (π̄t+1,t+4|xt) = µ̂τ + (1− λ̂τ )π∗t−1 + λ̂τπ
LTE
t + θ̂τ (ut − u∗t ) + γ̂τ (πRt − πt) + δ̂τFt, (2)

where risk factors affecting the distribution of future inflation can be divided in different blocks.

4Formally, the dependence between xt and a quantile τ ∈ (0, 1) of π̄t+1,t+4 is measured by the coefficient β̂τ :

β̂τ = arg min
βτ∈Rk

T−h∑
t=1

(
τ · 1(π̄t+1,t+4≥xtβ)|π̄t+1,t+4 − xtβτ |+ (1− τ) · 1(π̄t+1,t+4<xtβ)|π̄t+1,t+4 − xtβτ |

)
,

where 1(·) denotes the indicator function, taking the value one if the condition is satisfied.
5This can be rationalized by the fact that the direct model is agnostic about the nature of the evolution of the

dependent variable over horizons and thus performs best when the DGP departs from a linear AR process.
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A full description of the data is provided in Appendix A.

First, the variables π∗t−1 and πLTEt respectively represent average inflation over the previous

four quarters and a measure of long-term inflation expectations. Lagged average inflation captures

the role of “intrinsic persistence” or different forms of inertia in the price setting process that could

precipitate upward or downward drift in the aggregate inflation rate.6 In some models, this variable

proxies adaptive or non-rational expectations whereas in others it is used to capture backward-

looking or simple rule-of-thumb pricing rules. Long-term inflation expectations approximate the

importance of some firms setting prices in a rather forward-looking way. Which of these two

elements dominates the persistence observed in the distribution of aggregate inflation depends

on the size of the parameter λτ . To preserve the notion that inflation persistently deviates from

longer-run inflation expectations, we impose the homogeneity constraint in prices by constraining

the two coefficients to sum up to one. When λτ = 0, the model becomes an extension of the

accelerationist Phillips curve, where changes in inflation are a function of the unemployment gap.

We impose (1− λτ ) + λτ = 1, 0 ≤ (1− λτ ) ≤ 1 and 0 ≤ λτ ≤ 1 using the inequality constrained

quantile regression method developed by Koenker and Ng (2005).

The second risk factor is linked to variations in the amount of labor market slack – as measured

by the unemployment gap (ut−u∗t ), where ut is the civilian unemployment rate and u∗t is the natural

rate of unemployment. Most of the recent literature has concentrated on the stability over time of

the parameters λ and θ to explain the evolution of average inflation. This literature has focused, for

instance, on understanding the failure of average inflation to respond to unemployment – i.e., the

flattening of the Phillips curve – and on the increasingly dominant role of inflation expectations

in explaining inflation persistence – i.e., the well-anchoring of long-run inflation expectations.

In this paper we extend this analysis by exploring the effects of these variables on the tails of

the distribution of inflation. The importance of these effects is captured by the variation across

quantiles of the parameters λτ , (1− λτ ) and θτ in expression (2).

The third risk factor in (2) is given by (πRt − πt), which reflects variations in relative prices.

6Wolters and Tillmann (2015) use a quantile regression model of core CPI and core PCE inflation which solely
conditions on past inflation to study how inflation persistence differs across quantiles.
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We use the quarterly change in relative import prices (πIt − πt). As in Blanchard, Cerutti, and

Summers (2015), this variable is usually included to capture the pass-through of both nominal

exchange rates and oil prices into core inflation measures and is perceived as having been a key

driver of the run-up of inflation in the late seventies and the eighties. Lately, this variable has been

used to approximate a wide range of risk factors, from changes in global commodity prices, taxes

and tariffs to other global influences on domestic inflation. Its effects on the inflation distribution

are captured by the cross-quantile variation in the parameters γτ in expression (2).

The last, but not least, risk factor that we consider is related to financial conditions. Accord-

ing to conventional wisdom, economic factors – labor market slack, inflation expectations, and

relative prices – have been considered as the major sources of variation in the conditional mean

of inflation. However, recent research by Del Negro, Giannoni, and Schorfheide (2015), Chris-

tiano, Eichenbaum, and Trabandt (2015), Christiano, Motto, and Rostagno (2014) and Gilchrist,

Schoenle, Sim, and Zakrajšek (2017) suggests that changes in firms’ financial conditions (proxied

by variations in credit spreads) also helps to explain inflation dynamics. After the financial stress

of the fall of 2008, these studies aim at explaining how the sharp contraction in economic activity

was accompanied by only a modest decline in (average) inflation. However, they mostly discuss

the role of financial frictions in amplifying the business cycle and creating adverse feedback loops,

while leaving its implications for inflation not fully developed. We thus allow for financial condi-

tions Ft in expression (2), to affect differently the conditional inflation quantiles. This allows a test

for the presence of differential effects of financial variables on the mean versus the tails of the infla-

tion distribution (e.g., through the variation in δτ ). Following these authors, and as recommended

by Gilchrist and Zakrajšek (2012), we approximate Ft by the credit spread, cst.

1.2 Quantile Function of Inflation

The estimated conditional quantiles are approximations to the so-called “quantile function”, that is,

Qτ (π̄t+1,t+4|xt) = F−1
π̄t+1,t+4

(τ |xt), where F−1(·) is the conditional inverse cumulative distribution

function (CDF) of average future inflation. We follow Adrian, Boyarchenko, and Giannone (2019)
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in smoothing the quantile function using the skewed t−distribution proposed by Azzalini and

Capitanio (2003). This flexible distribution is characterized by four parameters and given by:

f(π̄t+1,t+4|xt, µt, σt, ηt, κt) =
2

σt
× t (zt,t+4;κt)× T

(
ηt zt,t+4

√
κt + 1

κt + z2
t,t+4

;κt + 1

)
, (3)

where zt,t+4 = π̄t+1,t+4(xt)−µt
σt

and t and T respectively represent the density and cumulative dis-

tribution function of the student t-distribution. The constants µt ∈ R and σt ∈ R+ are location

and scale parameters, whereas the constants ηt ∈ R and κt ∈ Z+ control the skewness and the

kurtosis of the distribution, respectively. We compute these parameters at each point in time t to

minimize the squared distance between our estimated quantile function Q̂τ (π̄t+1,t+4|xt), obtained

from the quantile Phillips-curve model (2), and the quantile function of the skewed t−distribution

F−1
π̄t+1,t+4

(τ |xt, µt, σt, ηt, κt) to match the 10th, 25th, 75th and 90th quantiles.

2 The Time-Varying Dynamics of Inflation-at-Risk

Two distinct subsamples emerge when characterizing the determinants of the inflation distribution

in the United States.7 The first period, running from 1973:Q1 to 1999:Q4, covers the OPEC shocks,

the subsequent Volcker disinflation and the early stages of the Great-Moderation. The presence of

large shocks to relative prices and the taming of inflation expectations induced large swings in the

upper quantile, while changes in unemployment and past inflation affected the median. These are

ubiquitous themes in the description of inflation dynamics.

The first period contrasts with the second subsample, from 2000:Q1 to 2019:Q1, characterized

by large movements in credit spreads, progressively well-anchored inflation expectations but sub-

dued inflation pressures. These patterns are studied in most of the literature discussing a favorite

whipping boy – the flatness of the Phillips curve. Well-anchored long-run inflation expectations

Yellen (2013), systematic monetary policy (e.g. Ball and Mazumder, 2019, McLeay and Tenreyro,

7We study the role of economic and financial conditions for the risks to the United States inflation outlook using
our full sample in Appendix B.
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2018) and mismeasurement of labor market slack (e.g., Stock and Watson, 2019) are the usual

suspects in explaining the observed muted response in average inflation, also referred to as the

“missing deflation/inflation puzzle” Williams (2010) (more on this in the next subsection). How-

ever, the financial crisis and the period in which monetary policy has been constrained by the zero

lower bound, have been followed by a period of underperformance of inflation relative to explicit

or implicit inflation targets. This period has ended with reductions, of different size, of long-term

inflation expectations. Some authors have pointed out that the risks of persistent below-target in-

flation are associated with the emergence of this phenomenon and claim that this set the seeds for

further downside risks to inflation. Through this section we will show that tight credit conditions

arising from financial crises also contributed to increasing odds of low inflation or even deflation,

pointing to a greater role of labor market recovery and well-anchored inflation expectations in sup-

porting average inflation. This point will be further investigated in the Section 4 using contrasting

evidence from the United States and the euro area.

2.1 Subsample Stability and the Missing Deflation/Inflation

To investigate how the importance of risk factors changed across the two subsamples, we report

their estimated quantile-specific slopes in Figure 1. Three results stand out. First, relative import

prices still pose threats to the upper inflation quantile, though to a lesser degree than prior to the

Great Moderation. Second, inflation inertia has completely lost its grip on inflation, crowning long-

run inflation expectations as the decisive inflation determinant among the variables in the modern

Phillips curve, as supported by the time-varying parameter model for mean inflation in Blanchard,

Cerutti, and Summers (2015).8 Third, long-run inflation expectations exert a symmetric effect on

the inflation distribution. In fact, in the recent period of well-anchored long-run inflation expecta-

tions the response of average inflation to labor market slack, financial conditions and relative price

8Among others, we use long-term inflation expectations from Consensus Economics as it provides equivalent data
for the euro area, an interesting comparison to the U.S. experience (see Section 4). Results are similar if we use
long-term inflation expectations from the SPF or Michigan survey, which are respectively available from 1987Q1 and
1981Q1.
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changes is dampened. However, it would be misleading to dismiss the role of these factors focus-

ing on the conditional mean only. Instead, credit conditions and, to a lesser extent, labor market

outcomes are key drivers of the asymmetry in the inflation distribution.

Figure 1: Quantile Regression Slopes Across Subsamples.
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NOTE: The figure shows the estimated slopes of the quantile regression of average four-quarter-ahead core CPI
inflation in the U.S., defined in expression (2). Two different subsamples are considered: (i) 1973-1999 and (iii)
2000-2019. The bars illustrate the coefficients for the 10th quantile (blue), median (red) and 90th quantile (yellow).

The Role of Credit Spreads There is substantial subsample instability governing the link be-

tween the inflation tails and variations in credit spreads. The sub-period 1973-1999 is characterized

by relatively small variations in credit spreads in a period of high and volatile inflation induced in

part by systematic increases in energy prices – reason why the actual contribution of credit spreads

to the inflation outlook in that period is smaller. From 2000 onward, low variability of inflation
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around 2 percent has been a notable aspect of the stability of the macroeconomic landscape that

has coexisted with substantial variation in credit spreads, a phenomenon amplified by the global

financial crisis.

Focusing on the most recent subsample, a novel result is that the link between the inflation

outlook and financial conditions is asymmetric, in that an increase in credit spreads is associated

with a larger increase in downside risks than in upside risks. (We performed ANOVA tests on the

equality of the slope coefficients across quantiles and can reject the null hypothesis of equality

between the slopes on credit spreads for the 10th and 50th quantile at 1% significance level).

This result resonates with the findings by Korobilis, Landau, Musso, and Phella (2021) in

the context of both time-varying parameter and stochastic volatility versions of both our semi-

structural Phillips curve model and competitive time series models, by Cecchetti (2008) and Baner-

jee, Contreras, Mehrotra, and Zampolli (2020) in a cross-section of countries and is reminiscent of

the results for the GDP growth outlook in Adrian, Boyarchenko, and Giannone (2019). Moreover,

this result can be generated in nonlinear models with amplification mechanisms (e.g., financial

accelerator models). Specifically, it captures the notion that when financial conditions become

tighter firms cut prices disproportionately more, on average.9 In Appendix C, we show that our

findings can for instance be replicated by applying our quantile regression framework to simulated

data generated from the model by Gertler, Kiyotaki, and Prestipino (2019) - a fully micro-founded

and nonlinear DSGE model which features the possibility of a severe financial crisis.

In Appendix D, we show that these results hold also with different measures of financial con-

ditions and of inflation. Most importantly, the same patterns emerge when controlling for SPF

forecasts, thus proving that the credit spread is informative for inflation beyond its forward-looking

component and, thus, its information content for future economic activity.

9Gilchrist, Schoenle, Sim, and Zakrajšek (2017) explain why when firms experience a large drop in their liquidity
that pushes them to their constraints, such as in the Great Recession, one might see less deflation than otherwise pre-
dicted from a model with homogenous firms that does not take into account liquidity constraints. Liquidity-constrained
firms restrain from cutting prices below marginal costs to support their cash-flow. However, this does not mean that
tighter financial conditions result in “higher” inflation. The predominant effect is still the one on the extensive mar-
gin, whereby the not liquidity-constrained firms lower their prices disproportionately more than during normal times.
During regimes of low inflation, tight credit conditions thus impinge a more negative effect than usual.
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A Modern Phillips Curve The time-varying sensitivity of inflation to inflation expectations (and

inflation inertia), as well as its ability to explain the “missing deflation/inflation” puzzle, had al-

ready been explored and established by Blanchard, Cerutti, and Summers (2015). In Appendix E

we extend their findings to the entire distribution of the inflation outlook by constructing “coun-

terfactual” inflation distributions and inflation-at-risk probabilities from the perspective of these

two different subsamples. Our results confirm that the conventional wisdom from the pre-2000

economy would have suggested much larger deflation risks during the Great Recession and much

lower upside risks to the inflation outlook during the recovery than the modern Phillips-curve re-

lationship. We take this as evidence that the model estimated starting from the 2000’s does indeed

better characterize the inflation dynamics in recent times.

Predictive Ability of Credit Spreads Next, we show that for the sample starting in the 2000s,

the augmented Phillips curve model outperforms the standard model that ignores credit spreads

in terms of predictive ability. In Section B.1 of Appendix B we find that the augmented model is

also superior in terms of coverage by applying the Rossi and Sekhposyan (2019) test for correct

calibration of the predictive density .

The reliability of the predictive distribution can be assessed by measuring the accuracy of the

model’s density forecasts through its predictive scores. These are computed by evaluating the

model’s predictive distribution at the realized value of the time series. A higher predictive score

indicates more accurate predictions, as the model assigns a higher probability to outcomes that are

closer to the realized value. We compute the predictive scores in an out-of-sample exercise where

the predictive distributions are calculated using an expanding window.

Figure 2 plots the out-of-sample predictive scores for the modern Phillips curve model esti-

mated starting in 2000:Q1 (see Section 2). The augmented Phillips curve model has a higher pre-

dictive ability, on average, than the standard Phillips curve model that ignores credit spreads. We

take this as evidence of the importance of considering financial conditions in the modern Phillips

curve in characterizing the inflation outlook.
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Figure 2: Out-of-Sample Predictive Scores. Model Estimated from 2000:Q1.

NOTE: The figure illustrates the out-of-sample predictive scores obtained from the density constructed by fitting a
skewed-t distribution on the conditional quantiles from the quantile regression model (2) that starts in 2000:Q1. The
quantiles are constructed via an expanding rolling windows estimation starting in 2006:Q4. In particular, for the first
out-of-sample evaluation, we use data for average core CPI inflation over the next year until 2005:Q4 to estimate the
model. Then, we use data for the explanatory variables in 2006:Q4 to construct the out-of-sample predictive scores.

3 Evidence from Financial Markets and Regime-Switching Model

In this section we provide further evidence of our main finding that higher credit spreads are asso-

ciated with higher downside risks to the inflation outlook. First, we look at inflation probabilities

derived from inflation options and show that credit spreads are most negatively associated with

low inflation probabilities and that their relationship weakens as one considers higher inflation cut-

offs. We then consider predictive densities of various inflation measures derived from the Survey

of Professional Forecasters and find that they are remarkably similar to those obtained from our

quantile regression model. Finally, we estimate a monthly regime-switching version of our aug-

mented Phillips curve model over the last 20 years of data and show how the main findings of our

quantile regression model are directly comparable to and confirmed by this alternative approach.

3.1 Evidence from Financial Markets

Two defining features of our quantile Phillips curve model are that tight financial conditions carry

substantial downside risks to inflation and that these risks diminish as one moves to the left to

the upper tail of the inflation distribution. To test whether this relationship also holds in financial
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markets, we run an OLS regression of options-implied inflation probabilities of one-year-ahead

CPI inflation derived from inflation caps and floors contracts (as described by Kitsul and Wright,

2013) on the credit spread. In the left panel of Figure 3 we present the estimated coefficients of

that regression. The slopes are rescaled so as to facilitate the comparison with those coming from

our quantile Phillips curve model (the right panel reproduces the bottom-right box of Figure 8). In

particular, the coefficient for the probability of one-year-ahead inflation being below 1% is rescaled

to match the slope estimated on the lowest inflation quantile which arises from the quantile Phillips

curve model. Further, the coefficient for the probability of inflation being below 1% is transformed

from positive to negative – as a positive correlation between the credit spread and this probability

is equivalent to a negative relationship between the credit spread and the lowest inflation quantile.

Figure 3: Credit Spread Slopes, Quantile Regression vs. Financial Markets.

Financial Markets Quantile Regression

NOTE: The left panel reports the slopes of separate regressions of inflation probabilities on the credit spread (at
monthly frequency), along with their 95% confidence interval. The coefficient for the probability of future inflation
being below 1% is rescaled to match the slope estimated on the lowest inflation quantile which arises from the quantile
Phillips curve model (right panel, taken from Figure 8). The coefficients are transformed from positive to negative for
the probability of inflation being below 1% – as a positive correlation between the credit spread and this probability is
equivalent to a negative relationship between the credit spread and the lowest inflation quantile.

Despite the vast disparities in the construction of the tails of the inflation distribution, the

estimated slopes are very similar to each other. Most importantly, as the inflation probability

cutoffs increase, their relationship with credit spreads weakens. We thus confirm our findings from

the quantile regression that credit spreads exert their biggest downward pressure on the left tail of

the distribution and thus are an important factor behind its asymmetry.10

10This result is robust to the inclusion of the regressors used to purify the inflation probabilities from the oil price
effects (see discussion on these effects in Appendix F).
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Finally, in Appendix F we plot the time series of these financial-market-based probabilities

together with the credit spread (see Figure F-3). The graphs confirm the progressive weakening

in the relationship between the credit spread and inflation probabilities as one moves further up

in the inflation distribution until it completely breaks down once the upper tail is reached. We

also show that inflation probabilities coming from financial markets and from our quantile Phillips

curve model point in the same direction.

3.2 Evidence from Surveys of Professional Forecasters

We now compare the predictive densities coming from our quantile Phillips curve model with those

coming from the Surveys of Professional Forecasters (SPF). In Figure 4 we do this for both core

CPI (left column) and core PCE inflation (right column), as both inflation measures are available

in the SPF and applicable to our statistical model. We display the predictive densities of average

one-year ahead inflation for several dates before and after the Great Recession; and always for the

last quarter in a year, so that the horizon considered by the SPF and by the quantile regression

model are aligned.11 The SPF forecast densities (red dashed) are computed by applying a kernel

smoothing function on the point estimates across survey respondents.12 The quantile regression

densities (blue solid) are computed by fitting a skewed-t distribution on the estimated quantiles, as

described in Section 1.2. Finally, we report the realized value with a green solid vertical line.

The two densities are similar over time and when they do not align, the quantile Phillips curve

model seems to be closer to the realized value. In 2007-Q4, for instance, the SPF densities are

more optimistic than our statistical model, which is informed by the increase in credit spreads.

11Ganics, Rossi, and Sekhposyan (2020) discuss the importance of predictive densities based on fixed-horizon
density forecasts.

12Del Negro, Bassetti, and Casarin (2020) construct subjective SPF forecast distributions using non-parametric
Bayesian methods.
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Figure 4: Predictive Densities from Quantile Regression vs. from SPF Forecasts.
Core CPI (Left) and Core PCE Inflation (Right).
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NOTE: The figure shows the estimated skewed t-Student densities from the quantile Phillips curve model (blue solid)
of average four-quarter-ahead core PCI inflation (left panels) and core PCE inflation (right panels). The figure also
reports the realized value (green vertical line) and the density of SPF forecasts (red dashed) of the respective year-
on-year inflation measures, computed by applying a kernel smoothing function on the point estimates across survey
respondents.
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3.3 Evidence from Regime-Switching Regression

We analyze how a nonlinear model such as a regime-switching regression compares to quantile

regression estimates, as Caldara, Cascaldi-Garcia, Cuba Borda, and Loria (2020) in the growth-

at-risk context. We do so to add further evidence that the relationships we established in our

main analysis are not an artifact of the quantile regression but a genuine feature of the data that

alternative nonlinear models would identify as well.

Since in the regime-switching model we estimate more parameters than in the quantile regres-

sion (in particular, the volatility of the error term and the regimes’ transition probabilities), we are

going to move to monthly frequency to allow for more observations and better identification of the

regimes. To this end, we first introduce a monthly version of our quantile regression model and

show that the results mirror the ones from the quarterly specification. Next, we compare the find-

ings from the regime-switching model to the ones from quantile regression.13 As we will show,

the asymmetric effect of credit spreads on the inflation distribution and the symmetric effect of

inflation expectations is a robust finding across these approaches.

Monthly Quantile Regression We explore the monthly version of the quantile regression model

described in (2) by interpolating the inflation expectations data. The sample runs from from Jan-

uary 2000 to April 2019, the last available date for core CPI inflation over the next 12 months.

Formally, we estimate the following quantile Phillips curve

Q̂τ (π̄t+1,t+12|xt) = (1− λ̂τ )π∗t−1 + λ̂τπ
LTE
t + θ̂τ (ut − u∗t ) + γ̂τ (πOt − πt) + δ̂τ cst, (4)

where π̄t+1,t+12 is the (annualized) average core CPI inflation rate between month t+1 and month

t + 12, and where as in the quarterly model several risk factors affect the quantiles. Absent the

import price index at monthly frequency, we use oil price inflation πOt in the relative price term.

As shown in Figure 5, the results resembles those found at quarterly frequency for the most recent

sample (see Figure 1).
13In our baseline specification we stick to quarterly frequency as it allows to abstract from more volatile and

temporary movements in inflation and it does not require to interpolate data.
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Figure 5: Slopes of Inflation Determinants Across Quantiles, Monthly Model.

NOTE: Estimated 10th, 50th and 90th quantile regression slopes from monthly quantile regression model (4).

Monthly Regime-Switching Regression The Markov-switching regression model is given by

π̄t+1,t+12 = µ(st) + (1− λ(st))π
∗
t−1 + λ(st)π

LTE
t + θ(st)(ut − u∗t ) + γ(st)(π

O
t − πt) + δ(st)cst + σ(st)εt, (5)

where both the coefficients Θ(st) ≡ {µ(st), λ(st), θ(st), γ(st), δ(st)} and the standard deviation

σ(st) vary depending on an unobserved regime variable st ∈ {1, 2, 3} which indicates the regime

prevailing at time t. The latent variable st is governed by a discrete time, discrete state Markov

stochastic process, defined by the transition probabilities:

pij = Pr (st+1 = j|st = i) ,

3∑
j=1

pij = 1, ∀i, j ∈ {1, 2, 3} (6)

Estimation is done via Bayesian methods, details on priors and model fit are in Appendix G.

Inflation Regimes The estimated regimes broadly correspond to states where inflation is low,

moderate or high. This becomes clear when comparing realized average inflation over the next

year against the estimated regime probabilities, as we do in Figure 6.
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Figure 6: Regime Probabilities from Markov-Switching Regression.

NOTE: Estimated regime probabilities from regime-switching regression (5) featuring three regimes and one Markov
chain for both coefficients and volatility.

Relationship to Quantile Regression In Figure 7, we report the regime-specific fitted values

along with the estimated quantiles from the monthly quantile regression model (4), which are

remarkably similar. In particular, the low inflation regime corresponds to the 10th quantile, the

moderate inflation regime to the median and the high inflation regime to the 90th quantile.

Notice how over the last 20 years, periods of stable inflation have been accompanied by the

presence of sizeable downside risks arising from tight financial conditions. It is beyond the scope

of this paper to explore which structural factors influencing our inflation determinants kept risks in

check and thus stood behind the remarkable resistance of realized inflation from falling to negative

territory during the financial crisis; but one can reasonably speculate that swift monetary policy

communication and intervention into financial markets might have provided the needed cushion.
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Figure 7: Fitted Values: Regime-Switching vs. Quantile Regression.

NOTE: The figure reports regime-specific fitted values of average core CPI inflation over the next year along with the
conditional quantiles of that same variable estimated from the quantile regression. The model features one Markov
chain governing both coefficients and volatility.

What explains the similarities in the assessment of risks between the regime-switching and the

quantile regression models? Intuitively, this is due to the fact that the regime-switching model

identifies regimes of low, moderate and high inflation that roughly correspond to the subsample of

datapoints that most heavily inform the slopes on the 10th, 50th and 90th quantile in the quantile

regression. This becomes most evident by comparing the estimated coefficients from the regime-

switching regression (5) with the ones from the quantile regression (4), as we do in Table 1.

The regime-switching regression confirms our main findings from the quantile regression ap-

proach. Historically, credit spreads disproportionately held down inflation in regimes when infla-

tion was low, in line with Galvão and Owyang (2018) who also found that financial conditions have

stronger effect on inflation in periods of financial stress. On the contrary, inflation expectations

have a symmetric effect across regimes. Moreover, in regimes of high inflation, the unemployment

rate made less dent on inflation outcomes. Finally, we notice that the Markov-switching regression

identifies little or no changes in the volatility of inflation across regimes.

Thus, the inflation distribution arising from the quantile regression should be interpreted as

capturing the range of outcomes that inflation might take, on average, over the next year given the

historical relationships with its determinants during regimes of high, moderate and low inflation.
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Table 1: Estimated Coefficients Across Models

Regime-Switching Regression
Low Inflation Moderate Inflation High Inflation

µ(st) 0.30 [ 0.25, 0.41] 0.37 [ 0.18, 0.33] 0.50 [ 0.39, 0.63]
λ(st) 1.00 [ 0.99, 1.01] 1.00 [ 0.96, 1.02] 1.00 [ 0.85, 1.02]
θ(st) -0.16 [-0.19,-0.13] -0.17 [-0.18,-0.15] -0.07 [-0.10,-0.05]
γ(st) 0.00 [-0.01, 0.01] 0.00 [-0.02, 0.04] 0.00 [-0.02, 0.15]
δ(st) -0.33 [-0.38,-0.28] -0.15 [-0.18,-0.13] -0.15 [-0.18,-0.12]
σ(st) 0.18 [ 0.16, 0.21] 0.13 [ 0.11, 0.15] 0.14 [ 0.11, 0.19]

Quantile Regression
10th Quantile Median 90th Quantile

µτ 0.24 [-0.57, 1.05] 0.12 [-0.34, 0.58] 0.52 [-0.03, 1.08]
λτ 1.00 [ 0.63, 1.37] 1.00 [ 0.80, 1.20] 1.00 [ 0.77, 1.23]
θτ -0.16 [-0.20,-0.13] -0.16 [-0.18,-0.13] -0.05 [-0.08,-0.02]
γτ 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00] 0.00 [ 0.00, 0.00]
δτ -0.33 [-0.39,-0.27] -0.12 [-0.15,-0.08] -0.14 [-0.20,-0.09]

NOTE: Estimated coefficients from regime-switching regression (5) and from quantile regression (4). Both models
are estimated at monthly frequency from January 2000 to April 2019. Values in brackets for regime-switching model
indicate lower (5%) and upper (95%) bound of coefficients derived from their posterior distribution calculated via
MCMC using 20,000 replications, a burn-in of 1,000 replications and a thinning parameter of 10 (thus for a total
of 210,000 effective replications). Values in brackets for quantile regression model indicate lower (16%) and upper
(84%) bound of coefficients computed via “blocks-of-blocks” bootstrap (see Appendix H) using 10,000 replications.

4 The Great Recession: United States vs. Euro Area

We now analyze the effect of inflation drivers on the evolution of the inflation distribution during

the last 20 years of data, comparing the United States experience with that of the euro area. For

the eurozone, the analysis focuses on euro-area-wide core HICP inflation – measured by headline

HICP inflation excluding energy and unprocessed food.14 As for the U.S., the quantile regression

model (2) uses the sample period available for the euro area, that is, from 1999:Q1 to 2017:Q4.15

14Busetti, Caivano, and Rodano (2015) use dynamic quantile regressions to forecast the conditional distribution
of euro-area inflation. Tagliabracci (2018) estimates this distribution conditioning on Eurocoin. Busetti, Caivano,
Monache, and Pacella (2019) investigate the role of domestic and global determinants of euro area core inflation by
estimating a Phillips curve via expectile regression.

15The last date for which average inflation over the next four quarters is available is thus 2016:Q4. The data is
described in great detail in Appendix A.
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Quantile Phillips Curve Figure 8 displays the estimated slopes of the quantile regression model

(2) for the euro area (left column) and the United States (right column). The information is orga-

nized as follows. Boxes in each row correspond to the covariates of the model. The black squares

report the point estimates of the 10th, 50th, and 90th quantile-specific slopes. The length of the verti-

cal lines around the point estimates corresponds to the 68 percent confidence intervals constructed

by “blocks-of-blocks” bootstrap (see Appendix H). The OLS point estimates and their 95 percent

confidence intervals are given by the horizontal red lines.

The unemployment gap generates fairly similar responses of median inflation in the euro area

and the U.S. but important differences emerge when looking at the tails of inflation. In the euro area

the upper tail is the most sensitive segment of the inflation distribution to unemployment, while the

lower tail responds little. Thus, the relative odds of high inflation risks arising from a substantially

tight labor market outweigh the downside risks of low inflation associated with substantial labor

market slack. This pattern is reversed in the U.S., though the degree of asymmetry and the role of

unemployment in general is much more muted.

During this period, changes in the relative price of imported goods played a minor role in the

U.S., and a slightly larger role in the euro area. Still, there are some interesting differences across

economies. In the eurozone, the median and the lower tail of the distribution seem more responsive

than the upper tail of the distribution of inflation. For the U.S., these results are consistent with the

previous section, in which we pointed to a greatly reduced relevance of relative prices as inflation

determinants starting with the Great Moderation.

Longer-term inflation expectations and inflation inertia influence differently the overall infla-

tion distribution in the two countries. While in the U.S. inflation expectations dominate all parts of

the inflation distribution, in the euro area they only play a major role in explaining the upper tail of

inflation as odds of low inflation are also driven by past inflation. In other words, in the eurozone,

unmoored reductions in inflation expectations result in more persistent increases in downside risks

as their negative effect is propagated over time through a higher inflation inertia.
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Figure 8: Quantile Regression Slopes and Confidence Intervals.

Euro Area Core HICP United States Core CPI

NOTE: The figure displays the slope coefficients of the quantile regression of average four-quarter-ahead euro area
core HICP (left) and United States Core CPI inflation (right) defined in (2). The black squares correspond to the
point estimates whereas the vertical lines to the 68% confidence intervals computed via “blocks-of-blocks” bootstrap
using 10,000 replications (see Appendix H) for the 10th quantile (blue), median (red) and 90th quantile (yellow). The
estimation period is 1999:Q1 to 2017:Q4. The OLS estimates and their 95% confidence intervals are respectively
represented by the solid and dashed red lines.
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The last row in Figure 8 presents the role of credit spreads across inflation quantiles. In the

euro area higher credit spreads (i.e., tighter credit conditions) shift the inflation distribution to the

left as they have a fairly symmetric negative effect across inflation quantiles. This contrasts with

the U.S. in which most of the reduction in inflation following high spreads is concentrated in the

lowest tail, while the effects on the upper tail are not very significant.16 Most importantly, in the

U.S. financial conditions are the only significant source of asymmetry in the inflation distribution.

We performed ANOVA tests on the equality of the slope coefficients across quantiles. The

test rejected the null hypothesis of equality between the slopes on the 10th and 50th quantile at 1%

significance level for average past inflation in the Euro Area and for credit spreads in the United

States, thus confirming the importance of inflation inertia for the euro area and of credit conditions

for the U.S. in characterizing downside risks to and left-skewness in the inflation distribution of

the respective countries.17

Inflation Quantiles Figure 9 highlights key aspects of the evolution of the inflation outlook by

displaying the time series of the median, the 10th and the 90th inflation quantiles. The top panel

shows the evolution for the euro area while the bottom panel focuses on the United States.

In the eurozone, looking at the lower tail, it appears that downside inflation risks have been

important since the inception of the euro. Strikingly, the inflation distribution tends to tilt to the

upside around the three recessionary episodes, while also widening up significantly. By the end

of the 2001-2003 recession, downside risks to inflation started to trend down (i.e., the lower tail

fell) and after a faint recovery subsequently failed to rebound to the pre-contraction level. This

phenomenon is observed during the global financial crisis of 2008-2009 and repeated around the

2011-2013 recession, when downside risks increased further without recovering since then.

16This result is also robust to limiting the sample to 1995:Q1-2007:Q4 (i.e., discarding the Great Recession ) as
well as to using the short-term instead of the long-term CBO NAIRU measure for u∗t (the former is higher after the
Great Recession). Further, in Appendix I we extend these results to two alternative measures of inflation, core PCE
and the Stock and Watson (2019) Cyclically Sensitive Inflation index. The effects are more symmetric in the case of
core PCE, while the CSI measure exhibits a similar asymmetry as core CPI although of somewhat larger magnitude.

17The slopes for the 90th and 50th quantile are statistically different only for the U.S. unemployment rate.
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Figure 9: Time Evolution of Selected Conditional Inflation Quantiles.

Euro Area Core HICP
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NOTE: The figure displays the time evolution of the conditional quantiles of euro area core HICP inflation (top) and
of Unites States core CPI inflation (bottom) estimated from the quantile regression defined in (2). Shaded bars indicate
NBER-dated recessions for the United States and OECD-based recession indicators for the euro area.

The estimated quantiles for the U.S. in the bottom panel of Figure 9 show some salient dif-

ferences with the eurozone. First, the downward tilts to the distribution associated with the two

recessions were primarily a result of a drop in the left tail, unlike in the euro area where the down-

ward push was more pronounced for the median and the upper tail. This was particularly acute

during the global financial crisis. However, the substantial increase in the odds of low inflation

was followed by a sustained recovery until the distribution became again tightly centered slightly

above 2 percent with the 10th quantile moving back to close to 2 percent. This contrasts the euro-

zone experience, in which the left tail failed to recover after the global financial crisis. In Appendix

J we complement these results by exploring which factors contributed to the recovery of the left

tail in the United States and to the failed recovery of the left tail in the euro area.

The Role of Credit Spreads We now turn our attention to the increasing role played by changes

in credit conditions in influencing the downside risks of inflation throughout the recovery. In Figure
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10, we illustrate the time evolution of the 10th conditional inflation quantile of euro area core HICP

inflation (left) and of Unites States core CPI inflation (right), both for the baseline version of the

model (blue solid) and for a version where the effect of credit spreads is set to zero (black dashed).

The gap between the two lines captures the partial effect of credit spreads on the 10th quantile.

It is evident how tighter financial conditions exert a persistent downward pressure on downside

inflation risks and more strongly so, when credit spreads are high. It is remarkable how the large

spike in credit spreads observed in 2008 in the U.S. (bottom right panel of Figure 10) pushed down

the lower inflation quantile, which slowly moved back to about 2 percent by the end of 2016.

Figure 10: Partial Effect of Credit Spread on 10th Inflation Quantile.
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NOTE: The figure displays the evolution of the 10th conditional inflation quantile of average one-year-ahead euro area
core HICP inflation (left) and of U.S. core CPI inflation (right) estimated from the quantile regressions model (2), in
its baseline version (blue solid) and in its version in which the effect of credit spreads is set to zero (black dash-dotted).
Shaded bars indicate NBER-dated recessions for the U.S. and OECD-based recession indicators for the euro area.

The eurozone is a slightly different story. Financial conditions, which played a more limited

role in the lower tail inflation dynamics, became increasingly important after the global financial
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crisis. To see this, let us focus on the bottom left panel of Figure 10. This figure clearly shows

that the tightening in credit conditions occurred in two consecutive waves. The initial tightening

in financial conditions happened around 2008 and 2009 and marked a sharp reduction in the lower

quantile of the distribution that, even after some recovery in credit conditions during 2009, would

never rebound. The second wave, linked to the European sovereign debt crisis, exacerbated this

change. As of 2012, the deterioration in credit conditions lifted up substantially the odds of low

inflation. It is remarkable how, early in 2013, economic conditions pointed to a recovery in the

lower quantile. According to our model, however, this would have portrayed a misleading picture

reflecting the lack of consideration of the substantial downward pressures in place originated by

the still very tight credit conditions at that time. To see this more clearly, we translate the variation

in these quantiles into changes of the entire distribution of inflation, to which we turn next.

The Distribution of Inflation At a speech in London in July 2012, Mario Draghi – President of

the European Central Bank from November 2011 to October 2019 – announced the ECB’s com-

mitment of doing “whatever it takes” to preserve the euro. The eurozone was in the throes of crisis,

bond yields and credit spreads of weak euro-member governments were soaring, and financial mar-

kets doubted that European institutions could avert disaster. This is part of the historical context

reflected in Figure 11, which plots the estimated euro area core HICP predictive inflation distribu-

tions (left column) and their associated quantile functions (right column) across four selected dates

(for details on the construction of these objects please refer back to Section 1.2). In Appendix K

we also report the inflation probabilities associated with these distributions. We start at the dawn

of the global financial crisis (2007:Q4), then explore those periods in which downside risks were

most acute (2008:Q4 and 2011:Q4) and finally zoom in the end of our sample (2016:Q4). The blue

solid lines correspond to the baseline quantile model whereas the black dash-dotted lines parse out

the effect of credit spreads.

The results reaffirm that tight financial concerns played a crucial role in shifting to the left the

inflation distribution during the end of 2008 and remarkably so in the last quarter of 2011 – a few
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months before Draghi’s speech. It is noteworthy how by the end of 2007, inflation-at-risk above

3 percent was virtually non-existent, while the left-tail pointed to some minor downside risks of

inflation running below 1 percent. Overall, credit conditions barely affected these conclusions.

The two waves in which the financial crisis was reflected in tight credit conditions translated into

a remarkable change of the inflation outlook. The distribution shifted to the left and concentrated

around a median inflation little below 1 percent, with the odds of low inflation – or even deflation

– soaring. By the end of 2016 the distribution of inflation had fatter tails, with the odds of high

inflation above those observed at the peak of the crisis, but with substantial downside risks still

remaining. The effects of credit conditions on inflation are also illustrated in the right column

of Figure 11, which shows that the inflation quantiles which condition on credit spreads were

significantly below those that solely rely on economic factors.

In Figure 12, we compare these results with the experience of the United States, for which

we consider similar dates.18 We focus on 2008:Q4 as this is when downside risks were most

pronounced in the U.S. following the sharp rise in credit spreads and dire economic conditions.

As in the case of the eurozone, the effect of financial variables on the inflation distribution is

striking during those episodes in which financial distress was most acute. In 2008:Q4, for example,

tighter credit conditions contributed to pushing the entire inflation distribution to the left, while

making it more dispersed and poking down substantially its left tail to the point of placing non-

zero probability of deflation occurring on average within the next year (as we will show below).

Looking at the right columns of Figures 11 and 12, one important difference emerges between

the euro area and the U.S. experience – a difference we had already encountered when analyzing

the quantile-specific slopes of credit spreads on average future inflation in Figure 8. While in

the eurozone higher credit spreads pushed down the inflation distribution symmetrically across

quantiles, in the United States its effects were mostly reflected in the left tail. As we show below,

the translation of these effects into the probability of low inflation (i.e., downside inflation-at-risk)

is more pronounced, the more the inflation distribution is right-skewed (i.e., the fatter its left tail).

18This chart is similar to Figure 4 in Section 3.2, the only difference being that the densities have been computed
using the same sample as for the Euro Area.
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Figure 11: Selected Time Episodes of Predictive Densities (Left) and Skewness (Right).
Euro Area Core HICP Inflation.
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NOTE: The left panels show the estimated skewed t-Student densities of average four-quarter-ahead euro area core
HICP inflation, in its baseline version (blue solid) and in its version where the effect of credit spreads is set to zero
(black dash-dotted). The same panel also reports the realized value of average four-quarter-ahead United States core
PCE inflation (green vertical line) and the density of SPF forecasts of year-on-year core HICP inflation (red dotted)
computed using a kernel smoothing function. The SPF density is only available in 2016-Q4 as that is the first date
for which the SPF forecasts are available and the last data point in our sample. The right panels show the estimated
skewed t-inverse cumulative associated with the conditional densities in the left panels.
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Figure 12: Selected Time Episodes of Predictive Densities (Left) and Skewness (Right).
United States Core CPI Inflation.
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NOTE: The left panels show the estimated skewed t-Student densities of average four-quarter-ahead United States
core CPI inflation, in its baseline version (blue solid) and in its version where the effect of credit spreads is set
to zero (black dash-dotted). The same panel also reports the realized value of average four-quarter-ahead United
States core CPI inflation (green vertical line) and the density of SPF forecasts of year-on-year core CPI inflation (red
dotted) computed using a kernel smoothing function. The right panels show the estimated skewed t-inverse cumulative
associated with the conditional densities in the left panels.
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5 Tracking Risks During the Covid-19 Crisis

Risks to the inflation outlook have been front and center at the peak and in the recovery from

the Covid-19 crisis. We show how our model, augmented by credit spreads, allows to identify

important changes in the inflation distribution during this historical episode.

In doing this, we consider a monthly version of our model in which we use for past inflation π∗t

the average inflation rate between t and t− 11 when forecasting one-year-ahead inflation π̄t+1,t+12

as of time t. This is to allow to a more “real-time” assessment of inflation risks that incorporates

information on the current period inflation rate.19 The model is estimated from January 2000 to

April 2020, using as a dependent variable one-year-ahead inflation up to April 2021.

Figure 13 shows results for average inflation over the next 12 months, with core PCE inflation

on the left and core CPI inflation on the right. Specifically, it shows the distributions since January

2020, with markers given at the median and at the 90th quantile. Both core PCE and core CPI

inflation distributions have shifted to the right since the beginning of this year. Indeed, the selected

months show the quick build-up of downside risks to inflation during the harsh initial months of

the global pandemic (January to May 2020, top panels) which were then followed by the recent

increase in upside risks to inflation of the recent months (bottom panels).

We now ask what would have been the predictive distributions over the next 12 months had

the financial conditions deterioration of March 2020 persisted in May 2021. Figure 14 presents

distributions of average inflation over the next 12 months in May 2021 for our baseline (blue solid

lines) and in a counterfactual scenario in which credit conditions are those prevailing in March

2020 (black dashed lines). The easing of financial conditions since the onset of the pandemic

has moved the distributions of both core PCE and core CPI inflation rates to the right reducing

downside risks of low inflation. Indeed, had the financial conditions not eased during the period

from their May 2020 state, the probability of inflation running at or above 2.5 percent would be

about 7 percentage points lower for both core PCE and core CPI inflation rates as of May 2021.

19In our baseline model, we do not assume that the researcher knows inflation as of time t when forecasting future
inflation, due to lags in the releases of inflation data.
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Figure 13: Predictive Densities of One-Year-Ahead Inflation Measures During Covid-19.

Core PCE Core CPI
NOTE: Predictive densities of inflation over the next 12 months in selected episodes. Onset of the COVID-19 pan-

demic (top panel) and 2021 (bottom panel), for core PCE inflation (left) and core CPI inflation (right). Markers appear
at the median and at the 90th quantile.

Figure 14: Predictive Densities of One-Year-Ahead Inflation Measures in April 2021.
The Role of Credit Spreads.

Core PCE Core CPI
NOTE: Predictive densities of inflation over the next 12 months in May 2021. The baseline case is in solid blue lines

and the counterfactual case (in which credit spreads are at March 2020) levels in dotted black lines, for core PCE
inflation (left) and core CPI inflation (right). Markers are at the median and at the 90th quantile.
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6 Conclusion

In this paper we show that the recent muted response of the conditional mean of inflation to eco-

nomic conditions does not necessarily convey an adequate representation of inflation dynamics.

Indeed, we find ample variability in the tail risks to inflation, even when focusing on the post-2000

period of stable and low mean inflation. In particular, we document that tight financial conditions

generated times of substantial and persistent downside risks to inflation. We also show that ev-

idence from financial market quotes, from SPF forecasts and from a regime-switching model of

inflation is consistent with the previous findings.

Our paper offers a new empirical perspective to macroeconomic modelers and to policymakers,

showing that changes in credit conditions are key to understand tail-risk dynamics of inflation. Our

results provide empirical guidance and suggest more efforts in modeling the linkages between the

entire inflation distribution and financial markets in the context of nonlinear models.

As a future research avenue, we encourage the exploration of whether credit spreads in specific

sectors make the inflation outlook particularly vulnerable and whether certain inflation components

are particularly sensitive to movements in financial markets.
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A Data Appendix

In this section we provide details on the data for the United States and the euro area.

A.1 United States

• Core Consumer Price Index

– Source: FRED.

– Details: CPILFESL PCA, Consumer Price Index for All Urban Consumers: All Items

Less Food and Energy, Compounded Annual Rate of Change, Quarterly, Seasonally

Adjusted.

• Stock and Watson (2019) Cyclically Sensitive Inflation

– Source: Replication Material of Stock and Watson (2019) on Professor Mark Watson’s

Website.

– Details: Quarterly CSI inflation rates.

• Core Personal Consumption Expenditures

– Source: FRED.

– Details: PCEPILFE PCA, Personal Consumption Expenditures Excluding Food and

Energy (Chain-Type Price Index), Compounded Annual Rate of Change, Quarterly,

Seasonally Adjusted.

• Long-Term Inflation Expectations

– Source: Blanchard, Cerutti, and Summers (2015) and Consensus Economics (provided

by the Prices and Wages section of the Research & Statistics Division at the Federal

Reserve Board).
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– Details: From 1990:Q4 onwards, we use six- to-ten-year-ahead mean CPI inflation

forecasts from semiannual surveys from Consensus Economics. The inflation expecta-

tions data from Consensus Economics are available semi-annually in April and Octo-

ber. We impute the same inflation expectations value as the last available observation

for the missing months in between the data releases (e.g., if in 1991 October the value

is 2.5 and in 1991 April the value is 2, then we impute a value of 2.5 between 1991 May

and 1991 October and a value of 2 between November 1990 and April 1991). Before

1990:Q4 that date we use the series from Blanchard, Cerutti, and Summers (2015).

– Transformations: In the quarterly version of the model we average the monthly ob-

servations within a quarter. In the monthly version of the model we interpolate the

quarterly series.

• Unemployment Rate

– Source: FRED.

– Details: UNRATE, Civilian Unemployment Rate, Percent, Quarterly, Seasonally Ad-

justed.

• Natural Rate of Unemployment

– Source: FRED.

– Details: NROU, Natural Rate of Unemployment (Long-Term), Percent, Quarterly, Not

Seasonally Adjusted.

• Import Price Index

– Source: FRED.

– Details: B021RG3Q086SBEA CCA, Imports of goods and services (chain-type price

index), Solidly Compounded Annual Rate of Change, Quarterly, Seasonally Adjusted.

• Oil Price
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– Source: FRED.

– Details: WTISPLC CCA, Spot Crude Oil Price: West Texas Intermediate (WTI), Solidly

Compounded Annual Rate of Change, Quarterly, Not Seasonally Adjusted.

• Gilchrist and Zakrajšek (2012) Credit Spread and Excess Bond Premium

– Source: Data regularly updated in FEDS Note by Favara, Gilchrist, Lewis, and Za-

krajšek (2016).

– Details: Credit spread and excess bond premium as constructed by Gilchrist and Za-

krajšek (2012).

• Corporate Bond Spread

– Source: FRB/US model package available at this Federal Reserve Board website.

– Details: RBBB minus RG10. RBBB, yield on BBB-rated corporate bonds. RG10, yield

on 10-year Treasury security.

• National Financial Conditions Index

– Source: FRED.

– Details: NFCI, Chicago Fed National Financial Conditions Index, Index, Quarterly,

Not Seasonally Adjusted.

• Inflation Probabilities from Financial Markets

– Source: Provided by the Monetary and Financial Markets Analysis Section of the Mon-

etary Affairs Division of the Federal Reserve Board.

– Details: Probabilities are inferred from inflation caps and floors contracts as in Kitsul

and Wright (2013).

• Survey of Professional Forecasters (SPF) Core CPI and Core PCE Inflation Forecasts
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– Source: Philadelphia FED.

– Details: Philadelphia FED Website (Mnemonic: CORECPI and COREPCE). Q/Q Rate

of Change in the Quarterly-Average Core CPI Level (annualized percentage points).

• Oil Price Surprises

– Source: Downloaded from Professor Christiane Baumeister’s Website.

– Details: Probabilities are inferred from inflation caps and floors contracts as in Baumeis-

ter and Kilian (2016).
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Figure A-1: Inflation Measures, United States.
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Figure A-2: Regressors, United States.

Core CPI
CSI
Core PCE

Core CPI
CSI
Core PCE

45



A.2 Euro Area

• Harmonized Index of Consumer Prices

– Source: Statistical Office of the European Communities and Haver Analytics (provided

by the Advanced Foreign Economies section of the International Finance Division at

the Federal Reserve Board).

– Details: EA19, Total excluding energy, food, alcohol and tobacco. Quarter-over-

quarter annualized growth rates, seasonally adjusted.

• Long-Term Inflation Expectations

– Source: Consensus Economics (provided by the Advanced Foreign Economies section

of the International Finance Division at the Federal Reserve Board).

– Details: Six- to-ten-year-ahead mean CPI inflation forecasts from semiannual surveys

from Consensus Economics. France and Germany.

• Unemployment Rate

– Source: The Area-wide Model (AWM) database.

– Details: Unemployment Rate, Percentage of civilian work force, Total (all ages), Total

(male and female), Seasonally adjusted, but not work ing day adjusted data.

• Natural Rate of Unemployment

– Source: Authors’ Calculations.

– Details: HP-filtered trend (with smoothing parameter λ = 1600) of unemployment

rate.

• Import Prices

– Source: The Area-wide Model (AWM) database.
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– Details: Imports of Goods and Services Deflator, Index, Index base year 1995 (1995 =

1). Defined as the ratio of nominal, and real imports of goods and services. Based on

the gross concept, i.e. both extra- and intra- area trade flows are accounted for.

• Oil Prices

– Source: The Area-wide Model (AWM) database.

– Details: Oil Prices, United Kingdom, Petroleum: UK Brent, US dollars per barrel.

• Credit Spread

– Source: Data regularly updated at this Banque de France website.

– Details: euro area bank credit spreads from Gilchrist and Mojon (2018).

• OECD Recession Dates

– Source: FRED.

– Details: EUROREC, OECD based Recession Indicators for euro area from the Period

following the Peak through the Trough, +1 or 0, Quarterly, Not Seasonally Adjusted.
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Figure A-3: Inflation Measures, Euro Area.

Figure A-4: Regressors, Euro Area.
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B Inflation-at-Risk using Full-Sample Estimates

In this section, we first present full-sample estimates of the Phillips-curve quantile model to gauge

the influence of the inflation drivers on the tails of the conditional inflation distribution. This

naturally leads us to consider the presence (or not) of non-linear inflation dynamics, where the

non-linearity is intended as arising from the asymmetry in the importance of inflation determinants

across quantiles. We close the section by providing estimates of the conditional distribution of

average future inflation.

Our measure of inflation is “core inflation”. This measure provides information about the rate

toward which headline inflation will converge in the medium term if present patterns continue; as

volatile transient shocks will fade over time, the core rate is intended to be a reliable predictor of

future headline inflation. We focus on core CPI inflation, where inflation is measured as quarter-

over-quarter annualized growth rates in the underlying price index. In particular, our working

measure of inflation is the average inflation rate between t and t + 4 quarters. Our sample spans

the period from 1973:Q1 to 2019:Q1, as the Gilchrist and Zakrajšek (2012) credit spread is only

available starting in the early 70’s.

The four top panels of Figure B-5 report the estimated slope coefficients θ̂τ , (1− λ̂τ ), λ̂τ and γ̂τ

of the quantile regression model (2).20 They also visualize the partial fitted regression lines along

with scatterplots of one-year-ahead average inflation against the relevant inflation determinant. In

all figures we focus on three partial fitted regression lines, corresponding to the 10th, 50th and

90th quantiles. We also include the partial fitted OLS regression line, which is obtained from the

commonly estimated Phillips curve. These slopes are informative about whether economic and

financial conditions affect the tails of the inflation distribution differently than the median, which

indicates the presence of non-linearities in inflation dynamics.21

The top-left panel of Figure B-5 presents the quantile-specific Phillips curve coefficients asso-

ciated with variations in the unemployment gap. The results are in line with the recent evidence

20The quantile slopes, OLS estimates and their confidence intervals can be found in Figure H-1.
21In Section 4, we complement the information in these figures by showing the confidence bands of the estimated

slopes constructed by “blocks-of-blocks” bootstrapping (see Appendix H).
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suggesting a substantial flatness in the Phillips curve, as the conditional median of inflation re-

mains relatively muted in its response to changes in the unemployment gap. This pattern carries

over to the tails, albeit to a lesser extent. Indeed, the lower tail is somewhat more responsive to

the unemployment gap than the median. These results point to a mildly asymmetric response of

inflation to changes in the unemployment gap.

As the top-right panel of Figure B-5 reveals, changes in relative import price inflation most

strongly affect the upper tail of inflation. Increases in relative import prices tilt the inflation dis-

tribution to the upside, hence substantially increasing the odds of upside inflation risks. However,

reductions in relative prices make the distribution tighter around the median, a consequence of the

less significant response of the lower tail.22

The second row of panels in Figure B-5 shows how the inflation quantiles respond to average

past inflation and to inflation expectations. Here, we uncover yet another interesting asymme-

try: While movements in the median and in the upper tail are mostly dominated by average past

inflation, the lower tail of the distribution shows the largest response to changes in inflation ex-

pectations. That is, persistently high past inflation experiences tend to tilt the distribution to the

upside, hence creating upside risks to the inflation outlook (and barely affecting the lower tail). In

contrast, the modest effect of past inflation on the lower tail of the distribution implies that persis-

tently low inflation experiences do not generate significant downside risks to the inflation outlook

as the distribution does not shift to the left, but rather gets more compressed around the median.

Conversely, changes in long-run inflation expectations translate one-for-one to the left tail, while

the effects on the median and the upper tail are smaller. In other words, a sustained decline in

longer-run inflation expectations poses serious downside inflation risks, while the effects of such a

decline on upside risk are much more muted.

22Results are similar using relative oil price inflation (πOt − πt) (see Appendix B.3.1), share-weighted core import
prices and the real exchange rate (results available upon request).
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Figure B-5: Quantile Regression Slopes.
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NOTE: The figure displays the slope coefficients of the quantile regression of average four-quarter-ahead core CPI
inflation defined in expression (2). The lines illustrate the slopes associated with the median (red), the 10th (blue) and
the 90th (yellow) inflation quantile. The black lines are the OLS estimates. Circles indicate scatterplots of average
future inflation against a given inflation determinant. Grey circles indicate scatterplots of average future inflation
against a given financial variable prior to 1999:Q4 whereas black circles indicate the scatterplot for the period starting
in 2000:Q1.



For each economic factor, we highlight its relationship with the inflation outlook during the

most recent period with the black cloud of points which focuses on observations from the year 2000

onwards. As we will show in Section 2, the roles of the unemployment gap and of relative prices

in accounting for variations in average future inflation are considerably dampened. At the same

time, we find that the ability of inflation inertia to move the inflation distribution is dramatically

reduced, bestowing its predominant role to long-run inflation expectations.

The lowest panel of Figure B-5 shows the effects of changes in credit spreads on the infla-

tion quantiles.23 Overall, the negative sign suggests that high credit spreads (i.e., tight financial

conditions) generate downside inflation risks. Interestingly, credit spreads affect both tails of the

inflation distribution. However, as the figure shows, there is substantial subsample instability gov-

erning the link between the tails and variations in credit spreads. The sub-period 1973-1999 is

characterized by relatively small variations in credit spreads in a period of high and volatile infla-

tion induced in part by systematic increases in energy prices. This is captured by the light-grey

cloud of points. From 2000 onward, low variability of inflation around 2 percent has been a no-

table aspect of the stability of the macroeconomic landscape that has coexisted with substantial

variation in credit spreads, a phenomenon amplified by the global financial crisis. These combi-

nations correspond to the black cloud of points. As we show in Section 2, this more recent period

helps in correctly identifying the relationship between the tails of the distribution and the credit

spread, which is confounded by the time aggregation. We find that in the post-2000 period, most

of the reduction in inflation following high credit spreads is concentrated in the lower tail of the

distribution, while the effects on the upper tail are poorly estimated (i.e., the point estimates are

associated with high levels of uncertainty). Thus, the results point to a close relationship between

a tightening of financial conditions and risks of “low inflation”, while periods of “frothiness” and

bully financial markets have little effects on the upper tail of the inflation distribution; instead, they

make the distribution of inflation more concentrated around the median.

Finally, we performed an ANOVA test on the equality of the slope coefficients across quantiles.

23In Appendix B.3.2 we show that these results are robust to the choice of other financial variables.
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The test rejected the null hypothesis of equality between the slopes on the 10th and 50th quantile

at 5% significance level for all variables except for relative import prices, thus highlighting the

importance of both labor market, inflation and financial determinants in shaping downside risk and

left-skewness of the inflation distribution. On the other hand, relative prices is the only variable

whose slope for the 90th and 50th quantile are statistically different, confirming its importance for

upside risks to and right-skewness in the inflation outlook.

B.1 The Role of Financial Conditions

We now illustrate the influence of credit spreads on downside risks to inflation and their variations

over time (later on, we will focus on the last subsample starting in 2000 by comparing the United

States with the experience in the euro area). To do so we construct the 10th quantile of inflation

arising from the quantile model in its baseline version and in a version in which ignores the role of

financial variables.

Figure B-6 displays the evolution over time of the 10th inflation quantile in the baseline model

– which includes the effects of credit spreads (solid blue line) – and the 10th quantile constructed

by shutting down the effects of this financial variable (black dash-dotted line). The graph also

includes the time series of the credit spread (purple dashed line). It is evident that the quantile

model in which the role of financial variables is disregarded can be a misleading measure of down-

side inflation risk if there are significant changes in credit spreads. As credit spreads have been

growing over time, so does this model’s miss. Indeed, earlier in the sample the 10th quantile is

barely affected by credit conditions, while starting in the early 2000s – once the model accounts

for more pronounced variations in credit spreads – headwinds coming from financial conditions

substantially increase the odds of low inflation.

During the 1990s, there is a progressive reduction in the lower tail of the distribution that re-

mained fairly insensitive to financial developments. Starting in the 2000s, the 10th quantile showed

a remarkable resistance to go well below 2 percent. This phenomenon ended at the onset of the

global financial crisis and the subsequent zero lower bound episode. The lower tail of the distribu-
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tion was such that downside inflation risks materialized, with non-zero deflation probabilities. The

aftermath of the global financial crisis shows that the lower tail of the distribution exhibits substan-

tial persistence. That is, the tightening in credit conditions tilted the distribution to the downside

for a prolonged period. The reduction in downside risks was enabled by improvements in the labor

market and sustained by inflation expectations.

Figure B-6: Time Evolution of 10th Inflation Quantile Across Models.
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NOTE: The figure displays the time evolution of the 10th inflation quantile estimated from the quantile regressions
model (2), in its baseline version (blue solid) and in its version where the effect of credit spreads is set to zero (black
dash-dotted). The credit spread (purple dashed) is also reported. Shaded bars indicate NBER-dated recessions.

Calibration of Predictive Density We now formally assess how financial variables influence

the accuracy with which the quantile model characterizes the actual distribution of average future

inflation. In particular, we test for correct calibration of the conditional predictive distributions

implied by the baseline model in one case and by the model which does not condition on financial

variables in the other. To do so we use the test of Rossi and Sekhposyan (2019), which evaluates

the absolute predictive ability of a model at its estimated parameter values and, thus, in finite

samples.24 In this sense, both the parametric model and the estimation technique employed are

being evaluated.

To run the test, we first define the probability integral transform (PIT), i.e., the conditional

24See Rossi (2014) for an excellent summary of density forecast evaluations.
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quantile zt that corresponds to the realized observation π̄∗t,t+4:

zt ≡ F−1
π̄∗
t+1,t+4

(τ |xt) = Prob
(
π̄t+1,t+4 < π̄∗t+1,t+4|xt

)
, (B-1)

where F−1
π̄∗
t+1,t+4

(τ |xt) refers to the inverse of the conditional CDF or, equivalently, to the condi-

tional quantile function evaluated at the realized value π̄∗t,t+4. In a perfectly calibrated model, the

predictive density should feature a CDF which is uniform, i.e., equal to the 45◦ line. This prop-

erty implies that the probability that the realized value is above or below the predicted value is the

same (on average, across time) irrespectively of whether high or low realizations of the predicted

variable are considered. Following this logic, if the empirical CDF of the PITs lies outside of the

5% critical values, then the Rossi and Sekhposyan (2019) rejects the null hypothesis of correct

calibration.

In Figure B-7 we plot the CDF of a uniform distribution (red, dashed) as well as the empirical

CDFs of the PITs obtained from the baseline model (blue line) and from two versions which either

do not condition on the credit spread in the estimation (green line) or in the construction of the

inflation quantiles (black line), along with their 5% critical values (dash-dotted lines). The model

which nets out credit spreads in the construction of the quantiles (black line) can be interpreted as

quantifying the partial effect of credit conditions in the augmented Phillips curve model.

The critical values are bootstrapped following the Rossi and Sekhposyan (2019) procedure for

multi-step-ahead forecasts. As in Adrian, Boyarchenko, and Giannone (2019), the PITs are con-

structed via an expanding rolling windows estimation initially using 20 years of data. Confidence

bands should thus be taken as general guidance since Rossi and Sekhposyan (2019) derive them

for PITs computed using a fixed rolling window scheme.25

Unlike the baseline model, the model that disregards the role of financial variables in the con-

struction of the quantiles (black test) does not pass the test for correct calibration – as it poorly

specifies the predictive inflation distribution by placing too much mass on its lower tail. The CDF

25Using a rolling window scheme with 20 years of data we confirm that the model which does not use credit spreads
in the construction of the quantiles fails to pass the test because of poor calibration of the left tail. Also, we still can’t
reject correct specification of the predictive density of our baseline model (results are available upon request).
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Figure B-7: Rossi and Sekhposyan (2019) Test for Correct Calibration of Predictive Density.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

NOTE: The figure illustrates the CDF of a uniform distribution along with the empirical CDFs of out-of-sample
PITs obtained from the quantile regressions model (2), in its baseline version (blue) and in two versions which either
do not condition on financial variables in estimation (green) or in the construction of the inflation quantiles (black).
The 5% critical values for each model (dashed-dotted), are bootstrapped following the Rossi and Sekhposyan (2019)
procedure for multi-step-ahead forecasts. As in Adrian, Boyarchenko, and Giannone (2019), the PITs are constructed
via an expanding rolling windows estimation initially using 20 years of data. Confidence bands should thus be taken
as general guidance since Rossi and Sekhposyan (2019) derive them for PITs computed using a fixed rolling window
scheme.

of the PITs from the model neglecting financial variables in estimation (green line) is within the

critical values but performs worse than the baseline along the entire inflation distribution except on

the upper tail. We take this as evidence that our model calibration is at least as good, if not better,

than the model which does not condition on credit spreads.

Predictive Scores We further evaluate the reliability of the predictive distribution by measuring

the accuracy of the model’s density forecasts through its predictive scores. These are computed

by evaluating the model’s predictive distribution at the realized value of the time series. A higher

the predictive score indicates more accurate predictions, as the model assigns a higher probability

to outcomes that are closer to the realized value. We compute the predictive scores in an out-of-
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sample exercise where the predictive distributions are calculated using an expanding window.

Figure B-8: Out-of-Sample Predictive Scores. Model Estimated from 1973:Q1.

NOTE: The figure illustrates the out-of-sample predictive scores obtained from the density constructed by fitting a
skewed-t distribution on the conditional quantiles from the quantile regression model (2) that starts in 1973:Q1. The
quantiles are constructed via an expanding rolling windows estimation starting in 2001:Q1. In particular, for the first
out-of-sample evaluation, we use data for average core CPI inflation over the next year until 2000:Q1 to estimate the
model. Then, we use data for the explanatory variables in 2001:Q1 to construct the out-of-sample predictive scores.

Figure B-8 plots the scores of the predictive distribution from the baseline model starting in

1973:Q1 of a Phillips curve augmented with credit spreads, together with the scores of the predic-

tive distribution from the standard Phillips curve model that does not condition on credit spreads.

The model with and without credit scores performs about equally well, with the augmented model

and the standard model having higher predictive ability respectively at the onset and toward the

end of the global financial crisis.

B.2 The Predictive Distribution of Inflation

Figure B-9 displays, for selected dates, the estimated conditional predictive densities of aver-

age one-year-ahead inflation and their associated fitted inverse cumulative distribution functions

– shown in the inset boxes.26 The top and the bottom panels illustrate the contrast between the

odds of high inflation, which characterized the inflation distribution during the first part of the

sample, and the progressive switch toward downside risks to the inflation outlook which built up

26As formally described in Section 1, we construct the skewed t-Student probability density function of inflation
using the quantiles estimated using the regression model (2).
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at the onset of the global financial crisis.

As shown in the top panel, during the first subsample we select four dates. We start our time

travel in early 1974:Q1, around the recession triggered by the first wave of oil shocks and the easing

cycle of the Federal Reserve. The second quarter of 1980 is chosen to capture the effects of the

second OPEC shock. We pick these two dates as representative of the Great Inflation period. Then,

we look at the distribution in the mid-eighties, more precisely in 1984:Q2, to capture the effects

of the Volcker disinflation – a disinflationary transition period that led the U.S. economy into the

so-called Great Moderation. This last period is represented by showing the estimated conditional

inflation distribution in 1998:Q4.

Figure B-9: Conditional Predictive Inflation Densities at Selected Time Episodes.
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NOTE: The figures shows for selected time episodes the estimated skewed-t conditional densities of average four-
quarter-ahead core CPI inflation associated with the quantile regressions model (2). The inset box reports the values of
average future inflation across quantiles at the same selected periods. More formally, it depicts the estimated skewed-t
inverse CDF associated with the conditional densities in the main panel.
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Overall, the estimated quantile models capture how the inflation distribution moved from the

right - with significant upside inflation risks associated with the persistent effects of the oil shocks

in the mid-70s and early 80s – to the left, with almost negligible upside risks of inflation falling

above 4 percent at the eve of the 2000s. Beyond these general changes in the distribution, it is

worth noting how the shape of the distribution substantially changed over time. The first OPEC

shock led to an asymmetric inflation distribution, with almost negligible odds of inflation falling

below 6 percent but a long right tail creating very large upside risks to the inflation outlook. These

risks materialized after the second OPEC shock. The distribution shifted further to the right, with

upside risks becoming more balanced around a much higher average future inflation rate. Chair-

man Volcker’s reaction to the great concern about the rise in long-run inflation expectations led to

the aggressive monetary policy reaction designed to curb inflationary pressures and progressively

hamper inflation expectations. The effects of this policy are reflected in the noticeable shift-to-the-

left in the estimated inflation distribution, with upside risks substantially reduced by the mid-80s.

During those years, the inflation distribution became more symmetric and substantially more con-

centrated around the median. This disinflationary process continued during the 90s, and by the end

of the millennium the distribution concentrated around 2.5 percent, with the lower tail remaining

quite insensitive to economic or financial developments and showing a remarkable resistance to go

below 2 percent, a feature we analyze in Section 2.

The bottom panel of Figure B-9 selects a few dates in the evolution of the inflation distribution

during the last 20 years, and it depicts a completely different story from the first part of our sample

– although there is remarkable similarity between the inflation distribution at the eve of the Great

Recession, the blue line in the bottom panel that corresponds to 2007:Q4, with the one shown for

the last quarter of 1998 in the top panel. During this more recent period the reasons for concern

move from upside inflation risks to low-inflation or even deflation risks – with the ghost of the Great

Depression frightening central banks during the aftermath of the global financial crisis. Although

we devote Section 4 to develop this issue in depth, the three dates chosen in the bottom panel of

Figure B-9 serve as a useful preamble to that discussion.
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The global financial crisis and the dramatic increase in credit spreads translated into a right-

skewed (i.e., fatter left-tailed) inflation distribution, with the median moving progressively closer

to the lower tail. This phenomenon was exacerbated during the subsequent zero lower bound

episode. The lower tail of the distribution was such that downside inflation risks materialized, with

non-zero probabilities of deflation (see the red line that displays the distribution in 2008:Q4).

This emergence of substantial downside risks to inflation has been the main source of increas-

ing concern among researchers and policymakers. Monetary policy provided accommodation to

support a strong job market, to abate the lingering headwinds from the financial crisis, and to keep

inflation expectations well-anchored. These effects translated into a substantial shift to the right in

the inflation distribution, curtailing the odds of deflation by the end of 2014 (yellow distribution

shown in the bottom panel of Figure B-9).

Finally, it is interesting to notice how the inflation distributions implied by the model estimated

over the full sample suggested bigger risks to the inflation outlook than those that actually ma-

terialized. As we will show in the next section, this is a result of the fact that the Phillips-curve

relationships evolved over time and are substantially different in the two subsamples just con-

sidered. Indeed, the inflation risks during the Great Recession which are informed by full-sample

estimates mostly reflect conventional Phillips-curve relationships–which predominate the first sub-

sample and which imply a higher sensitivity of inflation to macroeconomic conditions–rather than

the modern Phillips-curve relationships–which are informed by the last subsample where stable

inflation expectations take the center stage and, thus, inflation is less sensitive to developments in

the economy. In Section 2, we investigate the relationships in these two subsamples separately so

as to uncover a more accurate picture of the relative importance of risk factors over time.
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B.3 Robustness

We now present additional robustness results for the full sample estimation. The data are described

in Appendix A. First, we show that conditioning on energy prices instead of imported goods yields

very similar results (see Figure B-10). Figure B-11 displays how changes in the financial variable

affect the estimated slopes in the baseline quantile regression model – for core CPI inflation – over

the full sample period. We consider three alternative financial variables: corporate bond spreads

(top-left panel), excess bond premium as constructed by Gilchrist and Zakrajšek (2012) (top-right

panel), and the national financial conditions index (bottom-center panel). The results are striking.

The lower tail of the distribution of inflation is highly negatively responsive to changes in financial

conditions, but the upper tail of distribution is not.

B.3.1 Oil vs. Import Relative Price Inflation

Figure B-10: Quantile Regressions Slopes Across Relative Price Measures.

-60 -40 -20 0 20 40 60
-2

0

2

4

6

8

10

12

14

 = 0.1
 = 0.5
 = 0.9

OLS

-300 -200 -100 0 100 200 300 400
0

2

4

6

8

10

12

14
 = 0.1
 = 0.5
 = 0.9

OLS

Slope γIτ on (πIt − πt) Slope γOτ on (πOt − πt)

NOTE: The figure displays the slope coefficients on relative prices of the quantile regression of average four-quarter-
ahead core CPI inflation defined in expression(2). The lines illustrate the slopes associated with the median (red), the
10th (blue) and the 90th (yellow) inflation quantile. The black lines are the OLS estimates. Circles indicate scatterplots
of average future inflation against a given inflation determinant. The left panel corresponds to the model where the
relative price measure is relative import price inflation, whereas the right panel considers the model where the relative
price measure is relative oil price inflation. Grey circles indicate scatterplots of average future inflation against a given
financial variable prior to 1999:Q4 whereas black circles indicate the scatterplot for the period starting in 2000:Q1.
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B.3.2 Different Financial Variables

Figure B-11: Quantile Regressions Slopes Across Financial Variables.
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NOTE: The figure displays the estimated coefficients of the quantile regression of average four-quarter-ahead core
CPI inflation defined in (2), using corporate bond spreads (top, left), the Gilchrist and Zakrajšek (2012) excess bond
premium (top, right) and the National Financial Conditions Index (center, bottom) and the same sample period as the
baseline. The lines illustrate the slopes associated with the median (red), the 10th (blue) and the 90th (yellow) inflation
quantile. The black lines are the OLS estimates. Grey circles indicate scatterplots of average future inflation against
a given financial variable prior to 1999:Q4 whereas black circles indicate the scatterplot for the period starting in
2000:Q1.
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C The Relationship between Credit Spreads and Inflation Quan-

tiles in a Nonlinear DGSE Model with Financial Panics

The Model We consider the fully micro-founded nonlinear DSGE model of Gertler, Kiyotaki,

and Prestipino (2019), which features the possibility of a severe financial crisis through a bank run.

There are two equilibria in their model, one with and one without a financial panic. When shocks

are small, the economy fluctuates around a standard equilibrium.27 In contrast, a big negative

shock pushes the economy into a bank run equilibrium. Combined with a sunspot shock, it triggers

a financial panic and bank net worth collapses. Banks are forced to sell assets, which ultimately

disrupts firms’ borrowing. Consequently, economic activity drops substantially more than in the

equilibrium without a bank run.

Parameterization As in Loria, Matthes, and Zhang (2019), we simulate the model using the

original calibration of the deep parameters and of the capital quality shock process (the only fun-

damental shock in the model). In order to generate rare financial crisis, we calibrate the process

for the sunspot shock such that a bank run equilibrium arises after a big negative shock (above two

standard deviations).28

Simulation We simulate this model 1000 times for 413 periods and store the inflation rate, the

credit spread, and the capital quality shock. Results are robust to the use of alternative measures of

financial conditions in the model. The simulated data shown in the top panel of Figure C-1 indicate

that also in this model there is a non-linear relationship between inflation and financial conditions.

Indeed, large credit spreads are associated with extremely negative inflation realizations.

27We follow the original paper in focusing on a capital quality shock as a representative structural shock. However,
other shocks would give rise to qualitatively very similar results because the mechanism creating asymmetry is not
specifically tied to one structural shock.

28The calibration intends to make the bank run event (see Figure 2 of the original paper) re-occurring in the
simulated sample. In their event study, the authors feed in two consecutive negative capital quality shocks of roughly
one standard deviation, together with a sun-spot shock, to generate a bank-run. We deviate slightly from their event
study by having sun-spot shocks occurring concurrently with a negative two standard deviations capital quality shocks
to ensure the probability of bank run of 2.5% across simulated samples.
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NOTE: Example from one simulation. Inflation(left axis) and Credit Spread (right axis).

Figure C-1: Simulated Data from Gertler, Kiyotaki, and Prestipino (2019) Model.

Quantile Regression We focus on current inflation as the shocks are transitory and only create a

sharp but short-lived recession. Further, we only consider the credit spread as conditioning variable

since the nonlinearity in the model is coming from financial conditions. The quantile regression

picks up the nonlinear relationship between financial conditions and inflation, suggesting that fi-

nancial conditions have a more negative effect on the left tail than on the median. Thus, also in this

example, the left tail of the distribution falls substantially during times of extreme financial dis-

tress, characterizing a vulnerable inflation outlook. This is further illustrated in the bottom panel

of Figure C-2 which plots the quantiles of inflation associated with the simulated data.

NOTE: Example from one simulation.

Figure C-2: Quantiles from Gertler, Kiyotaki, and Prestipino (2019) Model.
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The Role of Credit Spreads As shown in Figure C-3, the quantile regression slopes echo our

empirical findings that higher credit spreads are associated with an increase in downside risks to

inflation, as signaled by the negative slope coefficient for the 10th quantile. In terms of identifica-

tion, what delivers this result is that during bad times, those featuring a bank run, the conventional

channel whereby lower demand results in subdued price pressures is strongest. The reason why

the 90th quantile indicates a positive relationship is that in good times, without a bank run, a capital

quality shock reduces capital, and thus results in an increase in the rental rate of capital and in

marginal costs. The contrasting effects of the demand and cost of capital channels become evident

in the bottom-right panel of Figure 2 in Gertler et al. (2019), where in response to a capital quality

shock inflation increases in a no bank run equilibrium and drops in a bank run equilibrium. The

median quantile captures the tension between these two effects. Indeed, it is around zero as in

normal times these two effects almost offset each other.

NOTE: Black squares are medians across simulations. Shaded areas are 68% confidence bands.

Figure C-3: Quantile Slopes from Gertler, Kiyotaki, and Prestipino (2019) Model.
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D Robustness of Subsample Results

As noted in the main text, there is substantial subsample instability in the relationship between

credit spreads and inflation. This is confirmed by the subsample results shown in Figure D-1 and

Figure D-2 which thus reiterate how the importance of risk factors changed across the two subsam-

ples and mimic the one in the main text in which we report the estimated quantile-specific slopes

for core CPI (i.e., Figure 1). Importantly, once we control for subsample stability, the results are

extremely similar across these different inflation measures. We further confirm our findings by

substituting the credit spread as a measure of credit conditions with corporate bond spreads in Fig-

ure D-3 and with the excess bond premium in Figure D-4.
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Figure D-1: Quantile Regression Slopes Across Subsamples, Core PCE.
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NOTE: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core PCE
inflation defined in expression (2). Two different subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The
bars illustrate the coefficients associated with the 10th quantile (blue), median (red) and 90th quantile (yellow).
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Figure D-2: Quantile Regression Slopes Across Subsamples, Stock and Watson (2019) CSI.
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NOTE: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead Stock and
Watson (2019) Cyclically Sensitive Inflation defined in expression (2). Two different subsamples are considered: (i)
1973-1999 and (iii) 2000-2019. The bars illustrate the coefficients associated with the 10th quantile (blue), median
(red) and 90th quantile (yellow).
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Figure D-3: Quantile Regression Slopes Across Subsamples, Corporate Bond Spreads
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NOTE: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPI
inflation defined in expression (2), using corporate bond spreads and the same sample period as the baseline. Two
different subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The bars illustrate the coefficients associated
with the 10th quantile (blue), median (red) and 90th quantile (yellow).
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Figure D-4: Quantile Regression Slopes Across Subsamples, Excess Bond Premium.
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NOTE: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPI
inflation defined in expression (2), using the Gilchrist and Zakrajšek (2012) excess bond premium and the same
sample period as the baseline. Two different subsamples are considered: (i) 1973-1999 and (iii) 2000-2019. The bars
illustrate the coefficients associated with the 10th quantile (blue), median (red) and 90th quantile (yellow).
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Figure D-5: Quantile Regression Slopes Across Subsamples, Controlling for SPF Forecasts.
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NOTE: The figure displays the estimated slopes of the quantile regression of average four-quarter-ahead core CPI
inflation defined in expression (2), controlling for SPF forecasts of output growth and unemployment rate (averaging
across horizons) and using the same sample period as the baseline. Two different subsamples are considered: (i) 1973-
1999 and (iii) 2000-2019. The bars illustrate the coefficients associated with the 10th quantile (blue), median (red) and
90th quantile (yellow).
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E The Missing Deflation and Inflation Debate

In this section we ask how the inflation distribution and the inflation-at-risk probabilities would

have looked like from the perspective of these two different subsamples. In particular, we perform

the following experiment. We first consider the subsample running from 1973 to 1999 and use

the estimated relationship between inflation and its economic and financial determinants in that

period to compute the “counterfactual” inflation quantiles in the post-2000 era. These quantiles

are then used to construct the inflation distribution and the associated inflation-at-risk probabilities

– as if the conditions characterizing inflation in the first subsample had prevailed in the last part of

the sample. We then run the opposite experiment. That is, we use the quantile regression model

estimated over the sample ranging from 2000 to 2019 to construct the inflation distribution and

inflation-at-risk probabilities prevailing over that same sample. The assumption of stability in the

underlying relationships characterizing the inflation distribution in the first sample leads to the

appearance of “missing” inflationary and deflationary episodes.

In Figure E-1 we present the conditional predictive densities and inflation probabilities asso-

ciated with these two “counterfactual” economies. Two striking results stand out. First, from the

point of view of the pre-2000 economy (yellow dash-dotted line), during the zero lower bound

episode we should have observed disinflation, and even deflation, with probability one as well

as right-skewed distributions. In contrast, the post-2000 economy suggests only tiny deflation

and disinflation probabilities and more concentrated inflation distributions. This result directly

speaks to the debate on the “missing deflation”, i.e., the observed discrepancy between the defla-

tion/disinflation predicted by conventional economic wisdom given the weak inflation fundamen-

tals and the observed resistance of actual inflation falling to negative territory during the zero lower

bound period. Second, the pre-2000 economy (green solid line) supports a rise in inflation with

the recovery and subsequent expansion of the U.S. economy, as reflected by the increase in the

probability of inflation being above 3 percent for the most recent years and by the right-skewed

distributions. Conversely, the post-2000 economy wouldn’t have suggested any change in the in-

flation odds. This tension is related to debate on the “missing inflation”, the mirror image of the
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“missing deflation” conundrum.

These results can be easily rationalized by recalling the different role of inflation expectations

in the two “counterfactual” economies. While in the pre-2000 economy, the inflation distribution is

equally responsive to inflation inertia and inflation expectations as well as very sensitive to changes

in the unemployment gap and in relative import prices, in the post-2000 economy inflation dynam-

ics are mainly driven by inflation expectations. As the latter have been extremely well-anchored

around 2 percent since the early 2000s (as opposed to the period prior to that, see Appendix A), the

post-2000 economy would have predicted average future inflation and its tails to stay in check. No-

tice that the time-varying sensitivity of inflation to inflation expectations (and inflation inertia), as

well as its ability to explain the “missing deflation/inflation” puzzle, had already been explored and

established by Blanchard, Cerutti, and Summers (2015). Our analysis thus extends their findings

to the entire distribution of the inflation outlook.

While well-anchored inflation expectations go a long-way in accounting for the stability of

the inflation distribution throughout the Great Recession and the subsequent recovery period, it

would be misleading to think that it was its sole driver. In fact, as we pointed out before, downside

risks were also sensitive to changes in the labor market and financial conditions. Thus, monetary

policy not only ensured price stability on average by keeping inflation expectations in check but

also avoided tion risks by supporting the job market and easing credit conditions. We discuss the

relative role of these risk factors for the inflation outlook next.
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Figure E-1: “Counterfactual” Predictive Densities (left) and Inflation Probabilities (right).
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NOTE: The left panels show “counterfactual” skewed t-Student conditional densities of average four-quarter-ahead
core CPI inflation computed using “counterfactual” conditional quantiles over 2000-2019 which were obtained using
different subsample estimates of the quantile regressions model (2). The right panels show “counterfactual” infla-
tion probabilities for different cutoffs. These probabilities are computed from the “counterfactual” skewed t-Student
conditional densities shown in the left panels. Shaded bars indicate NBER-dated recessions.
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F Financial Market Probabilities

This section is devoted to find an external validation of the previous results for the United States.

We frame the analysis on whether the distribution of inflation embodied in financial options sup-

ports some of our conclusions about inflation risks derived from our quantile regression analysis.

Specifically, to put the emphasis on the lower tail of the inflation distribution, we first compare the

inflation probabilities implied by the “quantile Phillips curve model” with the one-year-ahead CPI

inflation probabilities derived from inflation caps and floors contracts (as described by Kitsul and

Wright, 2013). We focus on the probability of future inflation being below 1 percent.29

The black line shown in the top panel of Figure F-1 displays the options-implied probability of

headline CPI inflation next year being below 1% – from mid-2009 until the end of 2016. A solid

reading from this market portraits a quite striking picture. Market participants have systematically

been pricing a probability of inflation below 1% of around 40 percent up until 2016, and only after

that date this probability has been moving down to levels slightly below 20 percent – ten years

after the global financial crisis. However, many analyses have attributed the level and evolution

of this probability to the high correlation between market-based measures of inflation expectations

and oil-price related shocks – especially since the onset of the global financial crisis.

The top panel of Figure F-1 substantiates this claim by displaying the inflation probabilities

along with 3-months- and 6-months-ahead oil price surprises – computed using the oil market

price expectations that Baumeister and Kilian (2016) recovered from oil futures prices and after

controlling for changes in the risk premium.30 As the figure shows, the options-implied inflation

probabilities exhibits a high correlation with the oil-price surprises. Indeed, concerns about low

inflation associated with the rise in the probability around mid 2014 to late 2015 coincide with a

period in which financial markets have been steadily surprised to the downside in their oil price

expectations.

29The inflation probabilities are virtually identical if we consider one-year-ahead inflation instead of average one-
year-ahead inflation, as in our quantile regression model.

30The oil price surprises are computed as the difference between the market expectation of oil prices x-months
ahead and the realized price of the West Texas Intermediate. While these surprises are not i.i.d. but rather feature some
persistence, they still portray the actual surprise in oil price expectations of financial markets participants.
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To improve comparability of the options-based headline CPI inflation probability with our

measure of the tail of the core CPI distribution, we purify the financial markets’ inflation prob-

ability from effects of changes in oil, energy and food prices. In particular, we regress it on the

two oil price surprises as well as on energy and food price inflation, which also correlate with the

options-based headline CPI inflation probability (see Figure F-2).31

Figure F-1: Inflation Probabilities, Quantile Model vs. Financial Markets.
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NOTE: The top panel shows the options-implied inflation probabilities of United States headline CPI inflation next
year being above 1% against the 3 and 6-months-ahead oil price surprises computed using the oil market price expec-
tations that Baumeister and Kilian (2016) recovered from oil futures prices (top panel). The bottom panel shows the
probability of average one-year-ahead core CPI inflation being below 1% coming from the quantile regression model
as well as the probability of one-year-ahead headline CPI being below 1% implied from inflation caps and floors
contracts as in Kitsul and Wright (2013), purified from oil, energy and food price effects and transformed to quarterly.

The dashed red line displayed at the bottom panel of Figure F-1 corresponds to the residual

of this regression (where negative values have been set to zero). The bottom panel compares this

purified financial-market-based probability with the probability of average future U.S. core CPI

inflation being below 1% which arise from the quantile Phillips curve model (displayed in the top

right panel of Figure K-2). The figure is very suggestive as it shows how both measures point

31Since the dependent variable of the regression is a probability which falls between zero and one, we estimate a
generalized linear model with a logit link and the binomial family to ensure that the predicted values are between zero
and one. A standard OLS regressions delivers virtually identical results.
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in the same direction during most of the sample period. The probability of low inflation in the

U.S. increased immediately after the global financial crisis and it subsequently falls to almost zero

– remaining close to zero until the last quarter of 2016, with the exception of 2014/2015 when

market participants consistently expected higher oil prices and when energy prices fell consider-

ably. Accordingly, financial markets’ expectations of headline CPI next year being below 1% rose

accordingly during that time (see Figure F-2).

The small remaining differences can be explained by several factors. First, quantile-regression-

based inflation probabilities come from a statistical model in which relative prices are estimated

to play no role for the lower inflation tail whereas market participants seem to pay attention to

the latter. More importantly, our regression purifies the financial markets’ headline CPI inflation

probabilities only from their average relationship with oil, energy and food prices – failing to fully

capture times in which market participants strongly extracted information from these prices such

that they comoved perfectly with the inflation probabilities (as in 2014/2015).
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Figure F-2: Financial Markets’ Inflation Probabilities vs. Oil, Energy and Food Price
Measures.
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NOTE: The figure shows the monthly options-implied inflation probabilities of headline CPI inflation next year being
above 1% along with the 3-months- and 6-months-ahead oil price surprises computed using the oil market price
expectations that Baumeister and Kilian (2016) recovered from oil futures prices (top panel), the negative of energy
price inflation (mid panel) and the negative of food price inflation (bottom panel).

78



Figure F-3: Inflation Probabilities from Financial Markets vs. Credit Spread.
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NOTE: The figures shows the credit spread against quarterly options-implied inflation probabilities of headline CPI
inflation next year being above 1% (top panel), between 2% and 3% (mid panel) and above 4% (top panel).
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G Regime-Switching Regression

Estimation Procedure We solve the model in the RISE toolbox32 using the perturbation meth-

ods developed by Maih (2015). The model is then estimated using Bayesian methods with prior

hyperparameters specified in Table G-1. We choose a Minnesota-type prior used in Dynare (see

Villemot and Pfeifer, 2017) for the coefficients and a Dirichlet prior for the transition probabilities.

Table G-1: Prior Hyperparameters.

Coefficients: Minnesota-Type Villemot and Pfeifer (2017) Prior

Parameter Description Chosen Value

τ Overall tightness 1
d Speed at which lags greater than 1 converge to zero Not applicable since no lags
ω Covariance dummies 3
λ Co-persistence No sum-of-coefficients
µ Own-persistence No dummy initial observations

Transition Probabilities: Dirichlet Prior

Parameter Prior Mean Prior Standard Deviation

p12, p21 0.2 0.1
p13, p31 0.1 0.1
p23, p32 0.1 0.2

Model Fit We notice that this simple model is able to fit the data well, as shown in Figure G-1,

where we report the ergodic (average across regime) fitted values and residuals.

Figure G-1: Model Fit of Regime-Switching Regression.
Model Fit Ergodic Residual

NOTE: Ergodic fitted values, realized values and residuals of average core CPI inflation over the next year from
regime-switching model (5).

32The toolbox was developed by Junior Maih and is freely available at https://github.com/jmaih/RISE toolbox.
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H Bootstrap Method

To compute confidence bands for the quantile regression model we revert to “blocks-of-blocks”

bootstrap. While more details on this methodology can be found in Kilian and Lütkepohl (2018)

(see Chapter 12 therein), we here provide a brief summary of the bootstrap procedure.

“Blocks-of-blocks” bootstrap is used in cases where a researcher is interested in computing

confidence intervals around nonsymmetric statistics of the underlying data (e.g., autocorrelations

or estimators of autoregressive slope coefficients in a time-series context). This is relevant in our

case since not only the quantile regression slopes are non-linear functions of the data but also,

we are de facto running a h-step predictive regression of inflation on its (past) determinants. The

“blocks-of-blocks” bootstrap procedure allows to preserve the (time-series) dependency in the data,

which would in most cases be destroyed by a naive bootstrap.

More specifically, the “blocks-of-blocks” bootstrap procedure relies on first dividing the de-

pendent variable y and the regressors X into consecutive blocks of all possible m-tuples. At each

bootstrap replication, blocks of data are randomly drawn to form a new sample of the same size as

the original data. Importantly, the blocks are resampled in the same order for both the dependent

variable y and the regressors X , a key step which preserves the time-dependency in the data. In

our particular application, we run the quantile regression (2) and store the estimates corresponding

to each bootstrap replication. From the distribution of these estimates, 68 percent confidence inter-

vals are constructed and centered around the point estimate obtained with the original sample. The

procedure is asymptotically valid for stationary processes if the block size l increases at a suitable

rate as T → ∞. Following Berkowitz, Biegean, and Kilian (1999) we set m = 3
√
T , where T

is the sample size. Finally, this bootstrap procedure preserves the quantile regression feature of

being agnostic about the underlying distribution of the error terms, as this is not a residual-based

procedure.

Figure H-1 displays the slope coefficients of the quantile regression of average four-quarter-

ahead United States Core CPI inflation defined in (2). The black squares correspond to the point

estimates whereas the vertical lines to the 68% confidence intervals computed via “blocks-of-
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blocks” bootstrap using 10,000 replications for the 10th quantile (blue), median (red) and 90th

quantile (yellow). The estimation period is 1973:Q1 to 2019:Q1. The OLS estimates and their

95% confidence intervals are respectively represented by the solid and dashed red lines.

Figure H-1: Quantile Regression Slopes and Confidence Intervals.

United States Core CPI

NOTE: The figure displays the slope coefficients of the quantile regression of average four-quarter-ahead United
States Core CPI inflation defined in (2). The black squares correspond to the point estimates whereas the vertical
lines to the 68% confidence intervals computed via “blocks-of-blocks” bootstrap using 10,000 replications for the 10th

quantile (blue), median (red) and 90th quantile (yellow). The estimation period is 1973:Q1 to 2019:Q1. The OLS
estimates and their 95% confidence intervals are respectively represented by the solid and dashed red lines.
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I Inspecting Other Inflation Measures

In this appendix we reestimate the quantile regression (2) replacing core CPI with two alternative

measures of inflation: core PCE and Stock and Watson (2019) “Cyclically Sensitive Inflation”,

CSI. As in the baseline analysis, the dependent variable is the average inflation rate over the period

t and t+ 4 quarters ahead. The CSI weights 17 core PCE components by their cyclical covariation

with real activity. More specifically, the weights are computed so as to maximize the correlation

between a composite index of cyclical activity (developed in the same paper) and the year-over-

year change in the Cyclically Sensitive Inflation index. The CSI is thus meant to provide a real-time

measure of cyclical fluctuations in inflation (see Stock and Watson, 2019 for details).

Figure I-1 mirrors Figure 8 of the main text by displaying the estimated slopes of the quantile

regression model (2) for two measures of inflation: core PCE (left column) and CSI (right column),

along with their bootstrapped confidence intervals constructed as described in Appendix H. First,

and not surprisingly, CSI is clearly more responsive to changes in unemployment, while core PCE

is barely sensitive to labor market slack. The last row presents the role of credit spreads across

inflation quantiles and inflation measures. The effects are more symmetric in the case of core PCE,

while the CSI measure exhibits a similar asymmetry as core CPI although of somewhat larger

magnitude.

Figure I-2 confirms the important influence of credit spreads on the 10th quantile of the distri-

bution both for core PCE and for CSI inflation. This figure mimics the top-right panel of Figure 1

in the main text.

Figure I-3 displays similar exercises to those presented in the main text for these two alternative

measures of inflation, core PCE and CSI, respectively.
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Figure I-1: Quantile Regression Slopes and Confidence Intervals.

Core PCE Stock and Watson (2019) CSI

NOTE: The figure displays the slope coefficients of the quantile regression of average four-quarter-ahead of core PCE
inflation (left) and Stock and Watson (2019) Cyclically Sensitive Inflation (right) defined in (2). The black squares
correspond to the point estimates whereas the vertical lines to the 68% confidence intervals computed via “blocks-
of-blocks” bootstrap (see Appendix H) using 10,000 replications for the 10th quantile (blue), median (red) and 90th

quantile (yellow). The estimation period is 1999:Q1 to 2017:Q4.
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Figure I-2: Partial Effect of Credit Spread on 10th Inflation Quantiles.
Core PCE and Stock and Watson (2019) CSI Inflation.
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NOTE: The figure displays the time evolution of the 10th conditional inflation quantile of core PCE inflation (left) and
Stock and Watson (2019) Cyclically Sensitive Inflation (right) estimated from the quantile regressions model (2), in
its baseline version (blue solid) and in its version where the effect of credit spreads is set to zero (black dash-dotted).
Shaded bars indicate NBER-dated recessions.
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Figure I-3: Inflation Probabilities for Alternative Cutoff Values.
Core PCE and Stock and Watson (2019) CSI Inflation.
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Core PCE Stock and Watson (2019) CSI

NOTE: The figure shows the time evolution of inflation probabilities of core PCE inflation (left) and Stock and Watson
(2019) Cyclically Sensitive Inflation (right) for different cutoffs. These probabilities are computed from the skewed
t-Student conditional densities of the average four-quarter-ahead inflation measures which were fitted on the estimated
conditional quantiles for alternative specifications of the quantile regression model (2). Both panels are reported for
the specification with and without the credit spread (in blue solid and black dash-dotted lines, respectively). Shaded
bars indicate NBER-dated recessions.
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J Historical Contributions

We explore which factors contributed to the recovery of the left tail in the case of the United States

and to the failed recovery of the left tail in the case of the euro area. We thus next investigate

the role of the inflation determinants from the Phillips-curve quantile model in influencing the

inflation tails. In this regard, Figure J-4 complements the results in Figure 9 by presenting the

contribution of economic and financial factors to changes in the lower and upper quantiles of the

inflation distribution.

Focusing on the United States (the two charts in the right column of Figure J-4) it is striking

how long-term inflation expectations have played a predominant role in sustaining the recovery of

the left tail, supported to some extent by improvements in the labor market and more importantly

by the easing in credit conditions. On average, across time, 66 percent of the variation in the

upper quantile of the distribution is explained by changes in long-term inflation expectations, with

the residual difference explained by financial conditions (27 percent), the unemployment gap (5

percent) and relative import price inflation (2 percent).

In the euro area, on the other hand, inflation expectations and labor market conditions had

much less grip on downside inflation risks, with an average share of 37 percent and 4 percent

respectively. Rather, average past inflation had the predominant role in holding down the lower

inflation tail, its average share amounting to 42 percent. As in the U.S., financial factors played

an important role also in the eurozone (15 percent share) and relative prices had no meaningful

implications on the inflation outlook (2 percent share). A striking difference to the U.S. is how the

lack of recovery in inflation expectations has driven most of the downward trend in the lower tail

after 2012 – a tendency that diminished somewhat during 2016.

In the U.S. the upper inflation quantile is mainly dominated by changes in expectations, al-

though high unemployment and persistently tight credit conditions have also contributed to make

2 percent an effective ceiling – yet another dent left by the global financial crisis. The same can be

said about the eurozone with the important difference that financial conditions exerted a stronger

downward pressure on the upper tail, which thus resulted in a lower implicit inflation ceiling.
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Figure J-4: Historical Contributions of Economic and Financial Factors.
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NOTE: The figure shows historical contributions of average four-quarter-ahead euro area core HICP (left) and United
States core CPI inflation (right) associated with the quantile regressions model (2). The contribution of a given inflation
determinant is obtained by multiplying its time series with its estimated slope. Its relative share is then obtained by
weighting the contribution with its relative magnitude vis-à-vis the sum of all contributions (the share of the constant
term is distributed across the inflation determinants based on their relative share so as to not distort results). Shaded
bars indicate NBER-dated recessions for the United States and OECD-based recession indicators for the euro area.
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K Inflation-at-Risk

We refer to “Inflation-at-Risk” (IaR) as the probability that inflation falls above or below a certain

threshold. These risks are two-sided, with upside risks coming from “excessive inflation” and

downside risks from too low or even negative inflation (i.e., disinflation or deflation).33 There

are two key elements that characterize our measure of IaR: (i) a pre-specified threshold, i.e., an

upper (lower) level of inflation above (below) which inflation is “at risk” and (ii) a time period

(say, t + k) over which the risk to the inflation outlook is assessed. These elements are necessary

to substantiate statements such as: “With (100-τ ) percent confidence we shall not experience, on

average, inflation below (above) the level π̄∗ over the next t+ k periods.”

The conditional downside inflation-at-risk

PDt (π̄t+1,t+4|xt) ≡ Prob (π̄t+1,t+4 < π̄∗|xt) (K-2)

is the probability mass below π̄∗ in the conditional density f(π̄t+1,t+k|xt, µt, σt, ηt, κt):

PDt (π̄t+1,t+4|xt) ≡
∫ π̄∗

−∞
f(π̄t+1,t+k|xt, µt, σt, ηt, κt)dπ̄t+1,t+k, (K-3)

where at (100-τ ) percent confidence, inflation will not be, on average, below the level π̄∗ over the

next t+ k periods. In other words, this expression defines the (downside) inflation-at-risk through

the integral of the PDF over the inflation support up to a specified threshold (or the CDF).

Figure K-1 illustrates the link between IaR and the quantiles of the inflation distribution. Down-

side risks to inflation can be characterized by the probability mass to the left tail of the distribution

(left panel). The red area indicates that at 4 percent confidence level, inflation at risk is “zero

percent”. Or, equivalently, that a zero (or below) inflation rate corresponds to the 4th quantile of

the inflation distribution. Similarly, the right panel illustrates that, with a 15 percent probability,

33Our approach differs from the Value-at-Risk literature in one key way. In that literature, V aR(τ) is not a proba-
bility but the threshold such that the probability of future returns (not) exceeding that threshold is equal to τ . In that
sense, V aR(τ) is the τ th quantile of future returns. Formally, according to that definition, inflation-at-risk IaR(τ)
is thus the τ th conditional inflation quantile, Qτ (π̄t+1,t+4|xt), implicitly defined by the integral over the conditional
inflation density f(π̄t+1,t+k|xt) that sums up to τ :∫ Qτ (π̄t+1,t+4|xt)

−∞
f(π̄t+1,t+k|xt)dπ̄t+1,t+k = τ. (K-1)
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average future inflation can be above 3 percent – in other words, the upside (tail) risk associated

with “excessive inflation” is 15 percent. More generally, measuring τ th-percent IaR is akin to

estimating the τ th quantile of the probability distribution of inflation (or its outlook).

Figure K-1: Inflation-at-Risk.

“Deflation” Probability “High Inflation” Probability

NOTE: The figure displays simulated distributions. In the left panel, the probability of average future inflation falling
below 0% is 4 percent. In the right panel the probability of average future inflation exceeding 3% is 15 percent.

K.1 Inflation Probabilities

We now show how credit conditions affect the odds of low inflation. Figure K-2 displays, begin-

ning in 1999, our estimates of the evolution of the probability of observing inflation rates below

1 percent over the next four quarters. The two columns are used to contrast the eurozone (left

column) with the U.S. (right column). In each panel, we display the probabilities computed using

our baseline model (blue solid line) and its version which omits the effects attributable to changes

in credit conditions (black dash-dotted line).

Several conclusions emerge from these comparisons. Since 2000, the model omitting credit

conditions would have assigned zero probability to inflation running below 1 percent in the U.S.,

whereas accounting for the financial meltdown had profound effects on the inflation outlook – with

the probability of very low inflation (and deflation) temporarily reaching almost 40 percent in the

last quarter of 2008 (upper right panel). Results for the eurozone are more striking on this account.
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Figure K-2: Inflation Probabilities.
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NOTE: The figure shows the time evolution of the probability of average one-year-ahead euro area core HICP inflation
(left) and United States core CPI inflation (right) falling below 1%. These probabilities are computed from the skewed
t-Student conditional densities of the average four-quarter-ahead inflation measures which were fitted on the estimated
conditional quantiles for alternative specifications of the quantile regression model (2). Both panels are reported for
the specification with and without the credit spread (in blue solid and black dash-dotted lines, respectively). Shaded
bars indicate NBER-dated recessions for the U.S. and OECD-based recessions for the euro area.

Changes in the credit spreads in 2008-2009 and especially in late 2011 induced sharp increases in

the odds of very low inflation and a remarkable divergence between the blue and the dash-dotted

lines in the top-left panel of Figure K-2. By early-2014, this probability was slightly above 80

percent when the model includes financial variables, while it was around 30 percent in the model

accounting for the effects of non-financial variables only.

K.2 The Role of Skewness

In this section, we show that tail risks to the inflation outlook are amplified following a change in an

inflation driver if the latter not only shifts but also skews the distribution. We thus argue that since

credit spreads are the predominant factor in the modern Phillips curve which introduces skewness

in the inflation distribution, changes in credit conditions make the inflation outlook particularly

vulnerable – more than any other inflation driver considered in conventional Phillips curves.

We start by characterizing the derivative of downside inflation-at-risk PDt (π̄t+1,t+4|xt) defined
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in (K-3), for a given probability cutoff π̄∗, with respect to an inflation determinant xt. Formally,

∂PDt (π̄t+1,t+4|xt)
∂xt

=
∂

∂xt

∫ π̄∗

−∞
f(π̄t+1,t+k, µt, σt, ηt, κt|xt) dπ̄t+1,t+k, (K-4)

where we abstract from the dependence of the parameters µt, σt, ηt, κt on xt.

Applying the Leibniz integral rule,

∂PDt (π̄t+1,t+4|xt)
∂xt

=

∫ π̄∗

−∞

∂f(π̄t+1,t+k|xt, µt, σt, ηt, κt)
∂π̄t+1,t+k(xt)

∂π̄t+1,t+k(xt)

∂xt
dπ̄t+1,t+k, (K-5)

and assuming a linear regression quantile model for the mean of π̄t+1,t+k(xt) simplifies to:

∂PDt (π̄t+1,t+4|xt)
∂xt

= βOLS

∫ π̄∗

−∞

∂f(π̄t+1,t+k|xt, µt, σt, ηt, κt)
∂π̄t+1,t+k(xt)

dπ̄t+1,t+k. (K-6)

From expression (K-6) it follows that changes in any variable xt, besides affecting linearly the

quantile of the distribution of inflation, introduces a “nonlinear” effect on downside inflation-at-

risk. The first effect captures how a change in xt scales (up or down) the support of the inflation

distribution. The strength of this channel is measured by the coefficient βOLS . This first effect gets

amplified by the second term that cumulates the derivatives of the conditional density function

with respect to its support up to cutoff level π̄∗. It thus follows that the more right-skewed the

distribution is (i.e., the more mass is on its left tail) at a given point in time, the stronger the density

changes in the left part of the support and, in turn, the bigger the effect on downside risk caused

by a change in xt.

An Illustrative Example In Figure K-3 we illustrates the effect of a change in an inflation

determinant on the probability of average one-year-ahead inflation falling below 1% (downside

inflation-at-risk). The initial (normal) density is illustrated in the top panel. In this thought exper-

iment, the change in economic/financial conditions induces a change in the mean (center panel)

and then also in the skewness of the distribution (bottom panel). It is evident how the effect on
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downside inflation-at-risk is amplified if the change in the inflation determinant increases the right-

skewness of the distribution.

Figure K-3: Inflation Probabilities and The Role of Skewness.
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Perturbed Distribution: Change in Mean
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Perturbed Distribution: Change in Mean and Skewness
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NOTE: The figure displays the three states associated with a change in an inflation determinant that causes the initial
normal density (top panel) to feature a lower mean (center panel) and then also a right-skew (bottom panel).
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