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1 Introduction

Many recent contributions in economics are characterized by the quest for a sufficient-statistic, a

theoretical metric that summarizes the effect of a policy using only a few (high-level) parameters

leaving aside a large number of modeling details. Chetty (2009) coined the phrase, tracing the

origin of the idea to Koopmans (1953), Marschak (1953) and Harberger (1964), and discussed

advantages and limitations of using sufficient statistics in public finance models. Summarizing

the workings of complex models with a few measurable elasticities is convenient, useful for model

selection and holds promise for policy analysis. Several papers in public finance and international

trade have successfully followed the approach.1

In the area of monetary economics recent results have identified a sufficient statistic for mone-

tary shocks for a broad class of sticky-price models under low inflation. The key proposition is that

the cumulative response of output to a once-and-for-all small monetary shock, essentially the area

under the output impulse response, is proportional to the ratio of the kurtosis of the steady-state

distribution of price changes over the frequency of price changes. A version of this theoretical result

was first established in Alvarez, Le Bihan, and Lippi (2016) for the sticky price model of Nakamura

and Steinsson (2010), that nests as special cases two workhorse of macroeconomics: Calvo (1983)

and Golosov and Lucas (2007). The result was extended by Alvarez, Lippi, and Oskolkov (2020) to

a broader class of models using the generalized hazard function setup of Caballero and Engel (1993,

1999).2 Additional sufficient statistics have been discovered by Baley and Blanco (forthcoming)

for a setup with non-negligible inflation and by Alexandrov (2020) for the case of large nominal

shocks.

This paper presents an empirical test of the predictions of the sufficient-statistic proposition us-

ing the restrictions implied by the theory for an economy with low inflation. The theory prediction

1Examples include Schmieder and von Wachter (2016); Badel and Huggett (2017); Kleven (2020) for an extension
of Chetty’s formula in the field of public finance with empirical applications, see Arkolakis, Costinot, and Rodriguez-
Clare (2012); Anderson and Neary (2016) for international trade applications, Costinot and Werning (2018) for an
application to optimal technology regulation.

2This class also includes time-dependent models a la Calvo, canonical menu-cost models a la Golosov-Lucas,
intermediate cases such as the Calvo-plus by Nakamura and Steinsson or inherently random-menu cost models such
as those of Caballero and Engel. Moreover, the result holds in multi-product models, and also holds in a class of
costly information models that give rise to time-dependent rules, spanning classic models such as Taylor (1980);
Caballero (1989); Reis (2006).
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is somewhat bold: the ratio of kurtosis to frequency should explain different degrees of monetary

non neutrality, while other moments should not matter (e.g. the variance, or the skewness, of

price changes). This paper tests the sufficient-statistic result using producer price indices (PPI)

and consumer price indices (CPI) micro data for a large number of firms that are representative of

the French economy. Our test is made of three steps. We first estimate the sectoral responses to a

monetary shock for about 120 PPI industries and 220 CPI categories, using a Factor Augmented

VAR in the vein of Bernanke, Boivin, and Eliasz (2005); Boivin, Giannoni, and Mihov (2009).

We identify the monetary shocks using three alternative schemes (recursive ordering - both with

and without long-run restrictions being imposed-, and high frequency identification) and summa-

rize the extent of the non neutrality using the cumulative impulse response of the sectoral prices

(CIRP ). Since the sufficient statistic proposition concerns the cumulated response of output, we

use the theory to derive the implication for the cumulated response of prices. This has two ad-

vantages: to increase the number of cross-sectoral observations that can be used in the tests, and

to map the theoretical prediction into a metric that is more robust.3 Next, we use the micro data

underlying the sectoral data to measure the cross sectional moments of the distribution of price

changes. Finally, we inspect the relationship between the CIRP and the cross-sectoral moments

under the restrictions implied by the theory.

The results consistently show that the data do not reject the predictions of the theory across

a variety of tests, specifications, and robustness exercises. Both the frequency and the kurtosis

appear as statistically significant factors in accounting for the cross-sectional heterogeneity of the

estimated CIRP for both the PPI data as well for the CPI data. The sign and magnitudes of the

estimated coefficients are consistent with the predictions of the theory in the specification where

the variables enter the regression in a ratio, as the theory prescribes, as well as in an unrestricted

specification where both variables are entered as separate regressors. Moreover, “placebo” tests

show that moments not suggested by the theory, such as the size, standard deviation and skewness

of price changes, are not correlated with the CIRP . In addition, results are robust to allowing

in various ways for measurement errors, an important concern as far as micro price data are

concerned. When we compare results for PPI and CPI products, we find that the results for PPI

3The output response depends on sector specific elasticities that require additional information for the test.
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are more robust and consistent than the results for CPI products. In the robustness analysis,

we find that when removing products with frequent sales and substitutions (in particular, food,

clothing and furniture), the CPI results are more aligned with the ones obtained for PPI products.

This is consistent with the fact that the model underlying the sufficient statistic result assumes no

seasonal sales or, more generally, price plans.

Our analysis is the first attempt to test the sufficient-statistic proposition for monetary shocks

using the restrictions that are implied by the theory. A related analysis for the United States is

presented in Hong et al. (2020), where the authors inspect the correlation between the response of

sectoral producers price indices (24 months after the monetary shock) and several cross-sectional

moments of the distribution of price changes. In spite of the wording, that presents the empirical

evidence as a rejection of the sufficient statistic proposition, such evidence is not a proper test of

the theory for two reasons. First, the outcome variable in the regressions is the level response of

prices, while the theory concerns the cumulated response of output, and thus the dependent variable

in the regressions of Hong et al. (2020) is not the one that the theory focuses on. Second, several

regressions, such as those where kurtosis or frequency is used as the only regressor, are inconsistent

with the theory that prescribes both kurtosis and frequency to be part of the specification.4

The paper is organized as follows. Section 2 presents the sufficient-statistic proposition for

small monetary shocks and derives the theoretical restrictions to be tested on the data. Section 3

uses micro and sectoral data to measure the key ingredients needed to test the theory: (i) the

sectoral response of prices and output to monetary shocks (ii) candidate sufficient statistics, i.e.

several cross-sectoral micro moments. Section 4 presents the baseline results of the tests using cross

sectional data. Section 5 investigates the robustness of our findings using a number of alternative

measures and specifications. Section 6 concludes and discusses avenues for future research.

4The reason is that kurtosis and frequency are in general not orthogonal, for instance both respond to a change
in the distribution of adjustment costs. In spite of the disconnect between the outcome variable and the theory,
we note that the level of the impulse response might still be informative about the CIR if the responses across the
sectors are rank preserving. Indeed, we find it interesting that in the specifications where kurtosis and frequency
are both entered as regressors the signs of the estimated coefficients are consistent with the sufficient statistic
proposition, see e.g. column 1 and column 6 of Table 1 in Hong et al. (2020), or the cross sectional regressions of
Table 12 where both kurtosis and frequency are statistically significant and with the expected signs.
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2 A Sufficient Statistic for Monetary Shocks

This section presents the sufficient-statistic proposition for monetary shocks and derives some

empirically testable implications. We first illustrate the theory using Caballero and Engel’s (1999)

model, because of the generality of the setup that encompasses a vast class of sticky-price models.

We highlight the assumptions that are important for the result to hold, discuss other setups where

the result applies and setups where the result does not hold. Finally we derive various empirical

tests for the theory (Section 2.3).

2.1 Set-up: a general structural model of price stickiness

We describe the price setting problem for a firm in steady state using the random menu cost model

of Caballero and Engel (1999) and Caballero and Engel (2007), which covers a vast class of sticky-

price models, including several well known cases such as the canonical Golosov and Lucas (2007),

the pure Calvo (1983) model and the hybrid Calvo-plus model by Nakamura and Steinsson (2010).

The setup considers a firm whose marginal nominal cost follows a Brownian motion with variance

σ2 and drift µ, where the latter is due to inflation (the model is summarized in Appendix A).

The state of the firm x is given by its “price gap”, defined as the price currently charged by the

firm relative to the price that maximizes current profits, which is proportional to the firm cost

(measured as the log of the ratio between these prices). In the absence of control the price gap

evolves as dx = µdt+σdW where W is a standard Brownian motion. At any moment the firm can

change its price, and thus control x, by paying the menu cost Ψ > 0. Moreover, with probability

κ per unit of time, the firm receives an opportunity to pay a menu cost ψ ∈ [0,Ψ) drawn from the

distribution G(ψ). The distribution is allowed to have countably many mass points. We also allow

for Ψ to diverge. For instance a distribution with a mass point at ψ = 0 and Ψ→∞ can be used

to generate the Calvo model. When the distribution G is not degenerate the adjustment costs are

random, which is why these models are often referred to as to “random menu cost” models. The

firm maximizes the expected discounted value of profits and chooses the optimal times and size

of price adjustment as a function of its state x. The firm’s optimal choices are encoded in the

minimized value function v(x), described in the appendix, which defines the optimal return point
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x∗ = arg minz v(z), namely the optimal price gap chosen by a firm that adjusts. The value function

also defines the optimal boundaries of the inaction region X < X̄ which satisfy the smooth-pasting

and value matching conditions described in the appendix.

Policy rules. Following Caballero and Engel (1999) the optimal policy can be summarized by

a generalized hazard function, Λ : (X, X̄) → R+, which gives the probability (per unit of time)

that a firm with x ∈ (X, X̄) will change its price. The generalized hazard function is defined by

the optimal decision rule, or the value function, as well the Poisson arrival rate κ > 0 and the

distribution of fixed cost G. Formally, the generalized hazard function satisfies5

Λ(x) = κG (v (x)− v (x∗)) for all x ∈ (X, X̄) . (1)

Intuitively, the probability of adjustment at x is given by the fraction of firms that draw a menu

cost that is smaller than the benefit of adjusting. The value function v(·) and the generalized

hazard function Λ(·) have a minimum at x∗, are decreasing in x for x ∈ (X, x∗), and increasing in

x for x ∈ (x∗, X̄).

Compared to the workhorse Calvo (1983) model, where the adjustment probability is constant, a

generalized hazard function Λ(x) allows it to depend on the state x, the firm’s desired adjustment.

Such state dependence is appealing theoretically, see e.g. Barro (1972); Sheshinski and Weiss

(1977); Dixit (1991); Golosov and Lucas (2007), and has been found to be relevant empirically, see

e.g. Fougere, Le Bihan, and Sevestre (2007); Dias, Marques, and Santos Silva (2007); Eichenbaum,

Jaimovich, and Rebelo (2011); Gautier and Saout (2015).6 A large number of models are nested

by this framework, including the canonical Calvo model with a constant hazard Λ (x) = λ, the

Golosov and Lucas (2007) model with x bounded by the adjustment thresholds where the hazard

equals zero for x ∈ (X, X̄) and spikes at the adjustment thresholds. Intermediate cases cover the

so called Calvo-plus model by Nakamura and Steinsson (2010), the random menu cost problem of

5This is the continuous time version of equation (8) in Caballero and Engel (1999) discrete time model where
the draws from the distribution G occur in every period.

6Several authors have employed the generalized hazard function in applications and empirical work. For recent
applications see e.g. Costain and Nakov (2011); Carvalho and Kryvtsov (2018); Sheremirov (2019); for empirical
work see e.g. Berger and Vavra (2018); Petrella, Santoro, and de la Porte Simonsen (2018), and for related theoretical
work Baley and Blanco (forthcoming).
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Dotsey and Wolman (2020).

Mapping the model to observables. Absent aggregate shocks the model is characterized by

an invariant distribution of price gaps with density f(·) : (X, X̄)→ R+. As shown in Appendix A,

the distribution f(x) is uniquely determined by the generalized hazard function Λ (x).

The functions f and Λ are used to compute several steady-state objects that are observable in

the data, such as the frequency of price adjustments N(µ), and the distribution of the size of price

changes c, Q(c;µ), where the notation emphasises the dependence of these moments on the rate of

inflation µ. In turn, the latter is used to compute moments such as the variance of price changes,

V ar(µ), and the Kurtosis, Kurt(µ).

Statistics for low inflation economies. The main theoretical result that we present below

will be established for economies where inflation is zero, i.e. µ = 0. In this case the decision rules

are symmetric, in the sense that X̄ = −X, and the optimal return point is x∗ = 0, located in the

middle of the inaction region. Hence price changes are such that, upon adjustment, a firm with a

price gap x chooses to “close the gap” completely, i.e. it chooses a price change c = −x to reset

the state at x∗ = 0. The hazard function Λ, the invariant density f , and the size distribution of

price changes Q are also symmetric around zero.

We will argue that the result for zero inflation provides an accurate approximation for economies

where inflation is small, but not zero. The reason for this claim is that in models with idiosyncratic

shocks (formally where µ/σ2 <∞) the variables of interest, such as the frequency, the kurtosis and

the variance of price changes, all exhibit a zero elasticity with respect to inflation when evaluated

at zero inflation. Formally, it can be shown that7

∂ N(µ)

∂ µ

∣∣∣∣
µ=0

=
∂ V ar(µ)

∂ µ

∣∣∣∣
µ=0

=
∂ Kur(µ)

∂ µ

∣∣∣∣
µ=0

= 0 . (2)

Intuitively, this result states that the values of the even moments, such as frequency of price

adjustment, variance or kurtosis, change very little when we move from zero to small inflation

7The proof can be established by using the symmetry properties of the even moments of the distribution. Noting
that, for example, N(µ) = N(−µ) and taking the derivative with respect to µ gives 2N ′(0) = 0. See proposition 5
in Alvarez and Lippi (2019) for a rigorous proof.
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rates. Alvarez, Beraja, Gonzalez-Rozada, and Neumeyer (2019) offer new empirical evidence to

validate this prediction.

2.2 The Sufficient Statistic Result

Next, we discuss the propagation of a monetary shock in this economy. In particular, we consider

an economy in steady state, ie, with an invariant cross-sectional distribution of price gaps f(x),

and analyze the effect of an unexpected once-and-for-all monetary shock of size δ > 0 on output.

We consider the impulse response of output to such a shock, and focus on the area below such

impulse response, named CIRY as in Cumulated Impulse Response, as a summary measure of the

propagation mechanism.

Analytical results on the computation of the CIRY have been developed in recent papers

focusing on small shocks and zero inflation by Alvarez, Le Bihan, and Lippi (2016); Alvarez, Lippi,

and Paciello (2016). More results for environment with non-zero inflation and small shocks have

been developed by Baley and Blanco (forthcoming); Alvarez, Lippi, and Oskolkov (2020); analytical

results for large shocks in the presence of non-negligible inflation are studied in Alexandrov (2020).

We find the CIRY statistic convenient for two reasons. First, it combines in a single value the

persistence and the size of the output response. Second, for small monetary shocks, like the ones

typically considered in the literature, the area is completely encoded by frequency of price changes

and the kurtosis of price changes.

Formally, let the cumulative impulse response (CIRY ) of output for a monetary shock δ be:

CIRY (δ) =

∫ ∞
0

Y (t; δ) dt (3)

where Y (t; δ) is the aggregate output t periods after the shock δ, measured in deviation from the

steady state output. Using f(x, t) to denote the cross-sectional distribution of gaps at time t, and

considering an aggregate nominal shock δ which uniformly displaces the invariant distribution of

the desired adjustments at time zero, so that f(x, 0) = f(x+ δ) the output at time t (in deviation
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from steady state) is given by

Y (t; δ) =
1

ε

(
δ − P (t)

)
=

1

ε

∫ X̄

−X̄
f(x, t)x dx (4)

where P (t) stands for the response of the aggregate price level at time t and 1/ε is the industry’s

Marshallian wage elasticity, so that output is proportional to real wages (or real money balances).

The second equality formulates the same relation in terms of the distribution of price gaps x.

Our approach to characterize equation (3) is to compute the cumulated output measure for

each firm, as indexed by its price gap x, and then aggregate over firms using the displaced time

zero distribution f(x+ δ), see Appendix A for details.8

We highlight a homogeneity property of the output CIRY . Let Std ≡
√
V ar be the cross-

sectoral standard deviation of price changes in the economy with zero inflation. Also, with slight

abuse of notation, let us write CIRY (δ;N,Std,Kurt) to emphasize the dependence of the CIRY

on the steady-state moments. We have:

CIRY (δ;N,Std,Kurt) =
Std

N
CIRY

(
δ

Std
; 1, 1, Kurt

)
(5)

The equation shows that the CIRY is homogenous of degree -1 with respect to the frequency of

price changes. This is intuitive as changing N amounts to a rescaling of the time units, so that a

doubling of N is equivalent to everything happening twice as fast. The equation also shows that

the standard deviation of price changes scales both the size of the CIRY as well as the shock size.

In particular this implies that for small shocks δ, where a small shock must be interpreted as small

relative to Std, the only moments that matter for the CIRY are the frequency and the kurtosis of

8We stress that in computing such a measure we keep the decision rule constant at their steady state level. In
Proposition 7 of Alvarez and Lippi (2014) we showed that, given the general equilibrium set-up in Golosov and
Lucas (2007) and the lack of the strategic complementarities, such an approximation gives an accurate first order
approximation. We also use the fact that after the first price change the expected contribution to output of each
firm is zero since positive and negative output contributions are equally likely. This result, which holds around zero
inflation, is convenient since it allows us to characterize the propagation of the monetary shocks without having to
keep track of the time evolution for the whole distribution of price gaps.

8



price changes, since a first order expansion gives

CIRY (δ;N,Std,Kurt) ≈ δ
1

N

∂

∂δ
CIRY (0; 1, 1, Kurt)

Interestingly, for small values of δ/Std, the first order expansion of the CIR does not depend on the

standard deviation of price changes.

We next present the sufficient-statistic property – the cumulated output response following a

small nominal shock δ is (see Appendix A for the proof):

CIRY (δ;N,Std,Kurt) =
δ

ε

Kur

6N
+ o(δ2). (6)

The result states that the cumulated output response to a marginal shock, in a world with

small inflation, is accurately approximated by the ratio of the kurtosis to the frequency of price

changes, scaled by some constants. The approximation is accurate up to second order terms, so

the remainder is of order δ3.9

The result in equation (6) is, to us, striking. It holds in a large class of inherently different

models, from time dependent models a la Calvo, to canonical menu-cost models a la Golosov-Lucas,

intermediate cases such as the Calvo-plus by Nakamura and Steinsson or inherently random-menu

cost models such as those of Caballero and Engel. Moreover, we have shown in Alvarez, Le Bihan,

and Lippi (2016) that equation (6) holds in multi product models, and we have shown in Alvarez,

Lippi, and Paciello (2016) that the same equation holds in a large class of costly information models

that give rise to time-dependent rules, spanning classic models such as Taylor (1980); Caballero

(1989); Reis (2006). The broad applicability of the same equation across such a different set of

models is the hallmark of the “sufficient statistic” result, a theoretical notion coined by Koopmans

(1953); Marschak (1953), and recently revived by Chetty (2009); Badel and Huggett (2017) in

public finance models. The central idea is to derive formulas to describe the effect of a policy that

are functions of a few high-level elasticities rather than all the deep primitives of the models. In

our case, this means that a two steady state moments fully capture the CIR across a wide range

9This happens since CIR′′(0) is zero, which follows from twice differentiating the CIR and noting its antisym-
metric nature, or CIR(δ) = −CIR(−δ).
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of models that differ in terms of the number of primitives and even in their fundamental micro

structure (think, for concreteness, about the difference between a time-dependent model and a

multi product model).

Key assumptions and limitations of the sufficient statistic result. Three assumptions

are key for the proof of equation (6). The first one is that the model has no inflation, so that

several model objects display symmetry properties. While the assumption of zero inflation might

seem restrictive, we argue that it provides a good approximation to models where inflation is low.

The reason is that, as was noted above, that the CIRY function has a zero cross partial derivative,

CIRY
δ,µ(0, 0) = 0, which implies that CIRY

δ (0, 0) is insensitive to small changes in the value of

steady state inflation.

The second key assumption for the result to hold is that upon adjustment the firm completely

closes the price gap, i.e. that x is reset to zero. This assumption is violated in models with

high inflation, in models with strategic complementarities, or in models with price plans (as in

Eichenbaum, Jaimovich, and Rebelo (2011)). In such cases equation (6) is not a good summary of

the impulse response and other methods can be used to approximate CIRY . See Alvarez and Lippi

(2019) and Alexandrov (2020) for some results on, respectively, price plans and high inflation.

A third assumption is that x follows a Brownian motion. This assumption allows us to exploit

the identity N · V ar = σ2, and to use the Kolmogorov forward equation in the proof. In a model

with leptokurtic shocks, such as Midrigan (2011), such equation fails to hold and kurtosis and

frequency are not enough to summarize the CIRY . However, we note that for moderate deviations

from the normal benchmark, that are consistent with the data on the distribution of firms’ nominal

shocks, the formula continues to provide a useful benchmark (see Section 5 in Alvarez, Le Bihan,

and Lippi (2016) and the numerical results in Gautier and Le Bihan (2020)).

2.3 An Empirical Test for the Sufficient Statistic Result

This section uses the predictions developed above to derive an empirical test of the theory. We will

consider an economy made of several sectors, indexed by j, assuming that firms within a sector

are similar, i.e. that they have the same response to a common monetary shock. The thought
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experiment is to hit this economy with an aggregate monetary shock, and to use the variation in

the responses observed across the sectors to test the theory.

The theory in equation (6) predicts that the CIR is related to the observed ratio
Kurtj
Freqj

(in level)

according to

CIR
Yj
T ≈

δ

6εj

Kurtj
Freqj

(7)

where the approximation is due to the fact that the theory is based on a second order approximation

and that our measurement will use a finite horizon (T < ∞). Equation (7) suggests testing the

theory using a linear empirical relation between the product-level CIR of output over a long horizon,

and the observed product-level ratios of kurtosis to the frequency of price changes. However,

highly disaggregated sectoral output or real consumption series (at a monthly frequency) that

match exactly the level of disaggregation and high frequency of observations of categories available

for prices are typically not available. In particular, in the case of France, there are no available

monthly consumption volume data available at the same level of disaggregation as the CPI (we

conjecture the same holds for other countries). We thus rely in the following on the cumulated

impulse response of prices rather than output. One advantage of this strategy is also that both

the micro and sectoral sets of variables derive from the same source of micro prices, ensuring

consistency.

To obtain this alternative test, let us derive the relation between the cumulated response

of output in sector j at horizon T , CIR
Yj
T , and the one of the prices, CIR

Pj

T ≡
∫ T

0
P j(t)dt at

the horizon T , following a monetary shock of size δ. Using the definition in equation (3) and

equation (4) we have

CIR
Yj
T ≡

∫ T

0

Yj(t)dt =
1

εj

∫ T

0

(
δ − P j(t)

)
dt =

1

εj

(
δT − CIRPj

T

)
(8)

where δ
εj
T is the cumulated change in nominal output following a permanent increase in money.10

Replacing CIR
Yj
T by its value in equation (7) we have the following prediction relating the cumu-

10Note that when T tends to infinity, as the CIR of output is finite, the CIR of prices diverges. This is an expected
property as the price level is permanently higher (or lower).
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lated response of prices and the ratio of the price change distribution for a large T :

CIR
Pj

T ≈ δT − δ

6

Kurtj
Freqj

(9)

From this equation, we derive an empirical linear specification linking the product-level CIRs of

prices to a monetary shock and the observed product-level ratios of kurtosis over frequency of price

changes (in levels). One advantage of this specification (using CIR of prices instead CIR of output)

is that the predictions for prices are independent of the sectoral elasticity εj, which simplifies how

the regression coefficient should be interpreted. This provides an additional motivation for focusing

on the response of prices rather than output. We will thus estimate, as a baseline, the following

linear regression:

CIR
Pj

T = α + β

(
Kurtj
Freqj

)
+ νj (10)

where α = δT and β = −δ/6 are the theory-implied values of the regression coefficients and νj

is the regression’s error term. In our empirical exercises, we have normalized our measure of the

monetary policy shock so that δ = −1%, leading, under a strict interpretation of the model, to

the prediction that β = 1/6 and that α = −T where T is the time horizon (in months). In our

empirical tests, T will be set to either 24 months or 36 months. We refer to this regression as the

baseline regression, or as a “constrained regression”, since the specification imposes that kurtosis

and frequency enter the regression with coefficients of the same magnitude but opposite signs.11

We can further decompose equation (9) to investigate the restriction imposed by the theory on

how kurtosis and frequency relate to the CIR. For that, we rely on a first-order Taylor expansion

around the sample means F̄ , K̄, and we get:

CIR
Pj

T ≈ CIRP̄T − δ

6

K̄

F̄

Kurtj
K̄

+
δ

6

K̄

F̄

Freqj
F̄

(11)

From this expression we derive an unconstrained version of the empirical test where we relate

11An interesting property of the specification in equation (10) is that, for some type of measurement errors -
namely a fraction of price change being spurious changes, of a small size - , the induced multiplicative bias on
measured kurtosis and frequency is identical, so these biases do cancel. In other terms the specification is correct
even though both kurtosis and frequency are measured with errors. See Appendix F for details.
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the CIR of prices to the ratio of the product-level kurtosis over its average, and the ratio of the

product-level frequency over its average:

CIR
Pj

T = γ + βk

(
Kurtj
K̄

)
+ βf

(
Freqj
F̄

)
+ νj (12)

The theory suggests that βk and βf (i.e. the slope coefficients of the regressors
Kurtj
K̄

and
Freqj
F̄

)

are expected to be equal in absolute value.

We emphasize that the theory gives no prediction on the extent to which kurtosis and frequency

contribute to the “explained share of variance”, or to the fit, of the regression. This contribution

could be arbitrarily low or large, depending on the cross-sectoral dispersion of kurtosis and fre-

quency, without invalidating the theory.

3 Measuring Monetary shocks and Cross Sectoral Mo-

ments

This section discusses the data used in the analysis, and the construction of the empirical statistics

needed to test the sufficient statistic result. We will use variations across products to test the

theory. We rely on the fact that there is cross product variability in the price adjustment statistics,

and that equation (10) is expected to hold across different sectors.12 We need to estimate two types

of statistics: (i) the cumulative impulse response of prices (CIRP ) computed at the sectoral level,

and (ii) the moments of the distribution of price changes for the corresponding products.

Before detailing the construction of the objects underlying our test, we stress two important

features of our empirical approach. First, we make use of a cross section of moments computed

from two micro data sets of prices in France: a first one covering consumer prices and the other one

producer prices. Both data sets are relevant for our purpose, and each has distinctive advantages.

Consumer prices are observed directly and somewhat less prone to measurement issues (since they

can be directly observed in outlets), offer a broader coverage of the economy (goods and services

12In the paper we use indifferently the terms “sectors” and “products”. For PPI, product and sector classifications
fully overlap, whereas for CPI, we will use product specific price indices but no monthly consumption or production
statistics are available at this level of classification.
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vs. only goods for PPI products) and consumer inflation is used for the definition of the monetary

policy target. Producer price data are conceptually closer to the productive firms’ pricing problem

studied in standard macro models, and are not concerned by sales and temporary promotions.

The second feature is that we identify the monetary shocks by imposing that they have the

properties highlighted by the theory (in the spirit of the “sign restriction” approach). In particular,

we want a (contractionary) shock to decrease output in the short run, to have a permanent negative

effect on the price level, and to have no long-run effect on output. These characteristics are

consistent with the theoretical model described above, and are thus desirable to perform a test of

the sufficient statistics result. Note that in principle any common shock to the marginal cost of

firms could be used to test the theory. Oil price shocks would for instance qualify, but empirically

the sectoral dynamics following such a shock is strongly heterogenous making it hardly useable

for a test in a finite sample. On the contrary, an aggregate monetary shock has the desirable

features that it will eventually move all nominal prices by the same amount, leaving relative prices

unaltered. We exploit this homogeneity property in our long-run identification of the monetary

shock. Finally, we stress that another feature of our approach is that the construction of the CIRP

variables does not use the micro data nor the sectoral moments, so there is no reason to expect

any bias in favor (or against) the sufficient statistics result.

3.1 Measuring the sectoral response to a monetary shock

To estimate the CIRP for a large number of sectors of the French economy we employ a Factor

Augmented VAR (FAVAR). The method was developed by Bernanke, Boivin, and Eliasz (2005)

and Boivin, Giannoni, and Mihov (2009). We closely follow the approach of Boivin, Giannoni, and

Mihov (2009) as they focus on the response of sectoral inflation rates to monetary policy shocks.

A brief description is as follows:13 the FAVAR is a model in which the dynamics of a large number

of time series is governed by the evolution of a small number of times series, the factors, that are

typically – but not necessarily – unobserved and follow a VAR process.

Formally the vector of a large number n of time series Xt, called informational time series, are

13Appendix B describes the FAVAR model and discusses its framework.
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related to the factors Ft by the following equation:

Xt = ΛFt + et (13)

where Ft is a vector of dimensions K+M of respectively unobserved and observed factors, and

et is a vector n x 1 of error terms with zero mean. Following Boivin, Giannoni, and Mihov (2009)

we allow one factor, the interest rate Yt, to be observed, so Ft ≡ [F̃t Yt]
′ where the unobservable

factors F̃t are to be estimated. Notice that the observable factors and the informative time series

are two distinct objects that do not have any time series in common. The factors follow a VAR

process:

Ft = Φ(L)Ft−1 + vt (14)

where Φ(L) is a lag polynomial of finite order and vt is an error term with zero mean and covariance

matrix Q.

The unobserved factors can be estimated, typically by using a principal component analysis

on a large number of “informative” time series. After this step is performed, it is possible to

estimate a VAR in the estimated factors (along with the unobserved ones, if any). Once the

VAR is estimated, it is possible to retrieve the impulse response function (IRF) of any informative

time series to a monetary policy shock. This last point is crucial for our purpose to estimate the

cumulative impulse response of prices for all sectors.

Of primary interest for our purpose is the response of sectoral prices to an aggregate shock.

The dynamics of inflation in sector j will, in our FAVAR set-up, governed by:

πjt = λjFt + ejt (15)

where λj is a vector of loadings, recovered as the relevant row of matrix Λ. Equation (15) makes

it clear that one can easily recover the IRF of sectoral inflation (and hence, prices) to a monetary

shock from the IRF of the factors Ft to the shocks.

We include three types of “informative time series” in vector Xt: (i) macroeconomic data

for France including aggregate industrial production, aggregate producer price index (PPI), the
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aggregate harmonized index of consumer prices (HICP), unemployment rate, (ii) financial and

monetary variables relevant for the euro area including the monetary aggregate M3 in the euro

area, the value of banknotes in circulation in the euro area, the euro exchange rate with respect to

US dollar, yen, UK pound sterling, Swiss franc, Chinese Yuan Renminbi (iii) highly disaggregated

series of industrial production, producer prices (PPI) and consumer prices (CPI), as well as some

available disaggregated series for monthly consumption (16 broad categories of consumptions at an

intermediate aggregation level, including, for instance, durables consumption, manufacturing goods

consumption). As regards product-specific monthly price series, CPI price indices are available at

the 5-digit level of the ECOICOP classification (e.g. ‘01.1.1.1’ ‘Rice’) whereas PPI price indices in

the manufacturing sector are available at the 4-digit level of the NACE rev2 classification of sectors

(e.g. ‘08.11’ ‘Quarrying of ornamental and building stone, limestone, gypsum, chalk and slate’).

Overall, we use 223 product-specific consumer price indices covering both goods and services and

118 producer price indices covering the manufacturing sector. In addition, our analysis uses the

3-month Euribor as a measure of the monetary policy variable. This variable will be treated

as an observable factor, and we filter it following motivations and a procedure that are detailed

below. All the data are monthly and the sample period is Jan. 2005 to Dec. 2019. We are

interested in estimating the response of the disaggregated time series of prices (PPI and CPI) after

a monetary shock; in our analysis an exogenous shock to the 3-month Euribor. In a first step,

factors are computed from a Principal Component Analysis using the informative time series (in

log difference). We extract the five principal factors (those with the largest contribution to the

overall variance). We subsequently estimate a VAR with 12 lags for the 5 factors and the interest

rate.

Identifying monetary policy shocks and the price responses. To identify a contrac-

tionary monetary shock, and estimate the associated IRFs, based on our FAVAR results, we use

a Cholesky decomposition of the variance-covariance matrix of the VAR innovation. Following

a standard timing restriction, the Euribor is ordered as a last variable in the VAR. Notice that,

imposing a Cholesky decomposition in this setup does not imply that the IRFs of informative time

series cannot respond simultaneously to the monetary shock. The CIRP is computed cumulat-
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ing the responses of sectoral price levels over a large number of periods (see next section for a

discussion).

In our baseline approach we impose a “long run neutrality” restriction. Specifically, we impose

(i) that output comes back to its original level in the long run after a monetary shock and (ii) that all

sectoral prices have identical responses -equal to that of the aggregate price index- in the long run.

Both of these restrictions are consistent with the money neutrality hypothesis. To implement the

latter restriction in the baseline FAVAR specification, we proceed following Boivin, Giannoni, and

Mihov (2009). In an alternative FAVAR specification, we relax the long-run neutrality restriction

and let the relative prices be unconstrained.

We also normalize the shock, so that the monetary policy shock produces a 1% long-run decrease

in the aggregate price level. This normalization assumption (which has no bearings in terms of

inference) departs from the usual approach to normalizations imposing that the shock produce a,

say, 25 basis points impact effect on impact on the nominal interest rate. The normalization allows

an easier comparison with our theoretical model (where the size of the shock is proportional to the

long run response of the price level) and facilitates the interpretation of results relating the CIRP

to the sufficient statistic.

For robustness we consider the case when no long-run restriction is imposed (a case consid-

ered by Boivin, Giannoni, and Mihov (2009) along with the one with long-run restrictions). For

robustness purposes, we also explore an alternative identification procedure, following Gertler and

Karadi (2015), and use a High Frequency Identification in the VAR set-up. This allows us to han-

dle simultaneity concern without resorting to a timing assumption as in the Cholesky approach.

For the HFI approach, we use the data for monetary surprises in the euro area from Altavilla et al.

(2019), who rely on market interest rate changes around the times of ECB Governing Council

meetings.14

Filtering the Euribor. Given the marked downward trend in the nominal interest rate over

the sample period (itself partly related to the decline in the natural rate of interest, see Figure A)

14In robustness analysis, we also report results using the 2-year German Bond rate as the policy rate and using
the same HFI approach.
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the VAR estimates based on unfiltered interest rate data produce impulse response functions that

are not consistent with the response of output and inflation to a monetary policy shock suggested

by the model. The theory suggests that a (contractionary) monetary policy shock triggers a

transient, and negative, impact on inflation and output.15 Our approach is to use an HP filter

with parameter λHP delivering the expected properties. As is documented in Appendix C, we

select a value of λHP = 1000, a smaller value than the one traditionally used with monthly data.

Using this parameter value, we are able to recover IRFs that (both for CPI and PPI) feature a

negative response of prices and output for the aggregate price index, as well as the largest number

of sectors for which the individual price response is negative after 24 or 36 months. We stress that

our procedure for selecting the filter parameter makes no use of the microeconomic data or the

sectoral moments, so it is not biasing toward finding a relevance of the sufficient statistics results.

Our procedure is designed to produce a shock that has a common effect on all sectors and can be

interpreted as a monetary policy shock.

VAR Results: IRFs and CIRP ’s. Our estimated FAVAR provides theory-consistent results

for the responses of aggregate variables to a monetary shock. As presented in Appendix Figure D,

after a contractionary policy shock the interest rate increases and subsequently decreases, going

back to its steady state level after two years. Industrial production immediately reduces after

a contractionary monetary policy shock, then gradually recovers. The production price index

declines following the shock, then recovers towards the new steady-state value. The aggregate

consumption price index reacts similarly.

We focus our analysis on the objects used to test the sufficient statistic result, namely the

responses of sectoral producer and consumer prices, as derived from the FAVAR. Figure 1 reports

the estimated IRFs of production and consumer price series. In each panel, the blue line (Aggr

PPI/HICP) represents the IRF of the aggregate PPI/HICP series. Dashed red lines are the IRFs

of different sectors disaggregated at the 2-digit level for PPI and 1-digit for CPI.16 The thick red

15Identifying well-behaved monetary policy shocks for the euro area is particularly challenging over the sample
period, in particular due to the proximity of the effective lower bound on interest rates – see Andrade and Ferroni
(2021) and Jarocinski and Karadi (2020) for investigations in the context of information shocks.

16Our PPI/CPI series are available at the 4-digit and 5-digit levels, and the dashed red lines are constructed as
the arithmetic average of estimated IRFs.
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line is the average of all the dashed red lines. In both panels, red and blue curves have a very

similar shape, an expected property, as the average of sectoral responses should closely approach

the response of the aggregate price index.17 In both figures, we impose that the long run price

response is −1 percent at a long horizon. The transitory dynamics is however heterogeneous across

sectors. Most of them display a through in prices after 1 to 2 years after the shock.18

Finally, using the estimated IRFs of the PPI and CPI, we construct the CIRP s for each sec-

tor/product category, as the sum of the respective IRF from time zero up to a time horizon T .

The sectoral CIRP s are the most important object of interest in this section, since the sufficient

statistic result relates these measures to the cross sectional moments of the price change distri-

bution. We consider two different values for T , respectively 24 and 36 months (see Table A in

Appendix for descriptive statistics on product-specific CIRP s).

3.2 Measuring micro moments

Consumer Price (CPI) Micro Data For consumer price micro data, we rely on longitudinal

data sets of monthly price quotes collected by the Institut National de la Statistique et des Études

Économiques (INSEE) to compute the monthly French CPI (Consumer Price Index). Stacking

data sets used in Baudry et al. (2007), Berardi, Gautier, and Le Bihan (2015) and Berardi and

Gautier (2016) and extending the data set to September 2019, we obtain a long sample covering a

period of about 25 years between August 1994 and September 2019.

The data set contains about 30 million of price quotes, and covers about 60% of the CPI

weights.19 Price changes are computed as log-differences of prices, and we exclude price changes

due to sales. To compute price adjustment moments, we have first dropped data collected around

VAT changes (i.e. in Aug.-Sept. 1995, Sept.-Oct. 1999, April-May 2000, July-Sept. 2009, Jan.-

Feb. 2012 and Jan.-Feb. 2014) and before and after the euro cash changeover (between Aug.

17The small discrepancy between these two curves is due to the fact that the aggregate price index is a weighted
price index whereas the average of sectoral IRF is unweighted.

18In Appendix D, we report similar results for all the different specifications of the FAVAR model we have
estimated.

19Some categories of goods and services are not available in our sample: centrally collected prices, among which
car prices and administered prices (e.g. tobacco) or public utility prices (e.g. electricity), as well as other types of
products such as fresh food or rents.
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2001 and June 2002). We have also dropped price changes smaller than 0.1% in absolute values,

in both data sets, in order to control for possible small price changes due to measurement errors

(Eichenbaum et al. (2014)).

We compute price adjustment statistics excluding sales, as the model is not able to reproduce

price changes due to sales. For identifying sales we rely on an INSEE flag variable that identifies

whether a price corresponds to a sale price, either in the form of seasonal sales or temporary

promotional discounts. Sales are mostly concentrated in some sectors (i.e. clothing and shoes, and

furnishings).

We identify products at the 5-digit level of the ECOICOP product classification, which is

the most disaggregated level for which sectoral price indices are available. For each product,

we compute the frequency of price changes as the ratio between the number of price changes

(excluding price changes due to sales) and the total number of prices for this product. We also

compute the kurtosis of price changes, as well as other moments of the price change distribution

(such as average price changes, the standard deviation of price changes and the skewness of price

change distribution), at the product level. Overall, for CPI products, our baseline data set contains

price adjustment moments for 223 different “ECOICOP-5” products.

Measurement of kurtosis is notoriously a challenging issue, as large values of price changes, and

outliers, can have an important impact on kurtosis. Very large kurtosis values tend to be obtained

when not correcting for measurement errors.20 In our baseline, we drop from the calculations price

changes larger than 25% in absolute values, which corresponds to about 5% of all price changes.

As robustness, we provide results with alternative values for the thresholds used to defining for

outliers and address measurement errors concern (for very large or very small price changes in

absolute values). Drawing on Alvarez, Lippi, and Oskolkov (2020), we also provide results using

a measure of kurtosis including a correction for unobserved heterogeneity (see Appendix E for

details). Alternative kurtosis measures are highly correlated across products.

20Note however that excluding sales by itself does not decrease the degree of kurtosis, see for instance Gautier
and Le Bihan (2020).
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Producer price (PPI) Micro Data. We rely on micro price data collected by INSEE to

construct the French Producer Price Index (the same data set as the one used in Gautier (2008)).

Reported prices must be observed at the “factory gate”, excluding transport and commercialization

costs, or invoiced VAT. Our sample contains more than 1.5 million price reports between January

1994 and June 2005. Overall, more than 90% of the price quotes used to compute the French PPI

are available. The PPI covers all products manufactured and sold in France by industrial firms,

which includes sections C (Mining and quarrying), D (Manufacturing) and E (Electricity, gas and

water supply) of NACE Rev 2 classification.21 The data set has been investigated in Gautier

(2008) where further details are available. Contrary to CPI prices, there is no flag for temporary

promotions or sales. We assume, consistent with Nakamura and Steinsson (2008), that there are

no sales in producer prices. Like for CPI, price changes are computed as log-differences of prices.

For each NACE 4-digit sector, we compute both the frequency of price changes and the kurtosis

of non-zero price changes, as well as other moments of the price change distribution. Unlike with

CPI, large price changes are much less frequent (reflecting, and confirming, that sales or temporary

promotions are not a usual practice in the mainly business-to-business context of producer prices)

and only 2% of all price changes are larger than 22% in absolute value. To measure kurtosis, we

drop price changes larger than 15% in absolute values (which correspond to less than 5% of all

price changes) and we test the robustness of our results to this definition of price change outliers.

We restrict to the subsample of sectors for which an aggregate sectoral price index is available

from the statistical office, so as to match micro moments with time-series macro evidence in our

subsequent analysis. This result in a baseline sample containing 118 sectors.

Basic statistics for the micro data underlying both the CPI and the PPI, are presented in

Table 1 and Figure 2a and Figure 2b. Consumer prices are more rigid than producer prices, with

average frequencies of price changes of 10.6 percent and 19 percent respectively. The distribution

of price change has fat-tails for both data sets, with a virtually identical value of the average

unweighted kurtosis of 5.0 in both data sets. One main important takeaway is there is some

cross-sectoral dispersion in frequency and kurtosis of price changes, for both consumer prices and

21NACE is the general “classification of economic activities within the European Community”. Some sectors are
excluded from collection: mining of uranium and thorium, ores, publication, processing of nuclear fuel, weapons
and ammunition, building and repairing of ships and boats, manufacturing of aircraft and spacecraft, and recycling.
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producer prices - as apparent from the interquartile ranges or standard deviations, and from the

full distribution of moments plotted on Figure 2a and Figure 2b. The frequency of price changes

however seems to show relatively more cross-sectoral variability than the kurtosis of price changes.

While alternative corrections for measurement error and unobserved heterogeneity do change the

average value of kurtosis, they do not substantially affect the degree of cross-sector heterogeneity

however.

Cross-sectoral characteristics of both our CPI and PPI data sets are consistent with available

international evidence. As regards consumer price data, Berardi, Gautier, and Le Bihan (2015)

using the same data, provide a detailed comparison of CPI data moments in France with those in

the United States, based on detailed moments reported by Nakamura and Steinsson (2008). They

conclude that patterns are quite similar, whenever sales-related price changes are disregarded (as

the pattern of sales is however much more prevalent in the United States). Regarding producer

prices, Vermeulen et al. (2012) provide a comparison of the patterns of price setting in the United

States and 6 euro-area countries, including France - relying for that particular country on the same

data set as we use. They conclude patterns of producer price rigidities are very similar - albeit the

size of price changes is typically larger in the United States than in Europe. The above-mentioned

international evidence mainly focuses on the frequency of price changes, as well as on the first two

moments of the distribution of price changes. Evidence is scarcer on kurtosis. For US PPI data,

Hong et al. (2020) report and average kurtosis of 4.9. With consumer price data, Cavallo (2018)

report a median kurtosis of 4.8 in a large sample of countries based on “scraped” data. These

values, all obtained after correcting for measurement errors in the same spirit as we do, are thus

much in line with our baseline values.

4 Testing the Theory: Results

This section presents the results of the empirical tests developed in Section 2.3 using as inputs the

variations across products in the real effects of monetary policy, as measured in section Section 3.1,

and in the microeconomic price adjustment moments, as measured in Section 3.2.
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4.1 Estimates of the baseline empirical specification

This section presents our baseline estimation results. A visual summary of these results is provided

by Figure 3, that is the scatter plots of CIRP at horizon 36 months against the ratio Kurt/Freq,

for the different FAVAR specifications and for both PPI products (top panel) and CPI products

(bottom panel). For most of the specifications, we find a positive relationship in the cross section

of products between the value of CIRP and the value of the ratio Kurt/Freq.

Table 2 reports results for equation (10), the baseline “constrained” regressions for an horizon

T equal to 24 or to 36 months. We consider separately the CIRP of producer prices (Panel A)

and the CIRP of consumer prices (Panel B). In each panel we consider three specifications for

the identification of the monetary policy shock: the baseline one, with Cholesky identification

and long run restriction on relative prices; a first alternative with Cholesky identification and not

imposing any restriction on the long-run effect on relative prices; and a second alternative where

identification relies on High Frequency surprises and external instruments.

For producer prices (Panel A), the estimated slope coefficient associated with the Kurt/Freq

ratio turns out to be positive and statistically significant in all cases, whereas the constant term

is negative and statistically different from zero. These results are consistent with the theoretical

framework. A positive sign for the coefficient associated with Kurt/Freq ratio is expected since

a contractionary monetary policy shock has a negative effect on output, and the products with

higher Kurt/Freq ratios are expected to experience, in absolute terms, larger output effects.

Consistently, they will experience a less negative effect on prices, resulting in the cross-section

regression in a positive coefficient associated with the Kurt/Freq ratio. A higher Kurt/Freq

ratio can reflect either less frequent price adjustments, less price selection or both, implying larger

(absolute) real effects of monetary policy shock. The last columns of Table 2 report results without

the long-run restriction, and those using the HFI approach. Coefficients are significant and with

expected signs, as in the baseline. In the former case however, coefficients are larger than in

the baseline, presumably reflecting a larger degree of variability of the CIRP ’s in that case (see

Table A in Appendix D). For consumer prices the results are mixed (Panel B of Table 2). In

the baseline specification the Kurt/Freq ratio is not significant, but it is significant for the two
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alternative specifications (significance is at the 5% level for the 36 months horizon).22 Finally,

in all specifications for both PPI and CPI, we find the intercept to be negative and statistically

different from zero: on average, a contractionary monetary policy has a negative effect on prices

(consistent with predictions of equation (10)).23

To further investigate the relevance of both the kurtosis and the frequency of price adjust-

ments in explaining the propagation of monetary shocks, we report in Table 3 the estimate for

equation (11), an “unconstrained” version of the regression that allows for a potentially different

effect of frequency and kurtosis.24

For PPI products (Panel A), we find that the estimates are consistent with the theoretical

predictions. First, a larger product-level frequency is associated with a relatively more negative

effect on the CIRP for this product: if prices are more flexible, prices will decline faster. The

real effects of monetary policy will also be smaller. Second, a higher kurtosis is associated to

a smaller reaction of prices in that sector, resulting in a positive coefficient in the cross-section

regression - since the CIRP is negative following a contractionary shock. This effect is significant:

a higher kurtosis is associated with less selection effect leading to a lower CIRP of prices in absolute

value and increasing the importance of the real effects of monetary policy. Moreover, we cannot

reject that slope coefficients associated with frequency and kurtosis are equal in absolute value, as

predicted by the theory.25

For CPI products (Panel B of Table 3) we also find, in all cases, a negative and significant

relationship across sectors between frequency and the CIRP , and that the slope coefficient asso-

ciated with kurtosis is positive. As for PPI products, we find that a positive relationship between

kurtosis and CIRP . In the Cholesky case with no long-run restriction the estimate is however

not significantly different from zero. Moreover, in the Cholesky baseline case, we cannot reject

22In Table C of Appendix G we also provide results for the specification using a log ratio as the right-hand-side
variable, and results are consistent: we find a positive and statistically significant effect for PPI, and more mixed
for CPI products at both horizons.

23Note our identification assumptions for the FAVAR might contribute to this result, however, the restrictions
are imposed on the long-run values of the IRF and not on the CIRP per se (i.e. how the IRF converges to its long
run value).

24In Figure I, Figure J and Figure K in Appendix D we provide scatter plots of the CIRP and Kurt/Freq log
ratios but also scatter plots of the CIRP and log of frequency and kurtosis for the different FAVAR specifications.
They show a negative relationship between frequency and CIRP and positive between CIRP and kurtosis for all
specifications (in particular PPI products) and these relations do not seem to be driven by any particular product.

25Table B in Appendix G reports p-values of formal Fisher tests from the estimated parameters.
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that slope coefficients associated with frequency and kurtosis are equal, as predicted by the theory

(Appendix Table B). Finally, in almost all specifications, we find the intercept γ to be negative

and statistically different from zero as predicted by theory (equation (11)).

Besides, the model provides not only predictions on the size of the coefficients of the regressions,

but also on the amplitude of the coefficients for both constrained and unconstrained versions of the

model. In the constrained version of the model, β is predicted to be equal to −δ
6

which is equal to

0.16 in our case since we have normalized the shock to 1% whereas the intercept α should be equal

to δT , hence in our cases to −24 or −36.26 In the unconstrained model, βf and βk are predicted

to be both equal to δK̄
6F̄

in absolute values, coefficients in absolute values should be equal to 4.4

for PPI and 7.9 for CPI whereas the constant of the model should be equal to −δT + K̄
6F̄

which is

equal to -20 for PPI and -16 for CPI at the horizon of 24 months and -16 for PPI and -28 for CPI

at the horizon of 36 months. Note that testing these predictions is much more demanding for the

empirical exercise and depends a lot on the degree of precision of our estimates. However, looking

at the order of magnitudes of our results in Table 2 for our baseline case (Cholesky with long

run restriction), estimates are broadly in line with the predictions for PPI whereas it less the case

for CPI. Table B in Appendix G reports the results of more formal tests. For the unconstrained

version of the model, we find that baseline results are fully in line with predictions on the amplitude

of the coefficients for both PPI and CPI products and we cannot formally reject that the size of

coefficients are consistent with model’s predictions.

4.2 “Placebo” tests

While the above results are consistent with the “sufficient statistic” property, a sufficient statistic

property predicts something broader: it implies that the effect of a monetary shock should be

related to the ratio “kurtosis over frequency” but it also implies that other moments of the price

distribution should not matter in this relationship. To test this prediction, we run a regression in

which we add to our baseline regressions three additional moments of the price change distribution

computed at the product-level: the average size of (non-zero) price changes, the standard deviation

26Besides, the ratio α/β is predict to be equal to −6T , i.e. -144 at horizon 24 months and -216 at the horizon of
36 months.
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and the skewness of price adjustments. This exercise can be considered as a “placebo” test of our

baseline regressions, testing that our main result is not driven by correlations between frequency

or kurtosis and other moments of the price change distribution.

Table 4 shows the results for this specification using moments in levels. For the PPI samples

(Panel A) we find that the ratio of kurtosis over frequency has a significant positive effect at 5%

level across all specifications (except the Cholesky 24 month case where significance is at 10%) and

the coefficients are highly similar to the ones obtained in Table 2, i.e. in the baseline case. We also

find that neither the average size of price changes, nor the standard deviation of prices changes,

nor the skewness of price changes, do have statistically significant effects (one single exception

being the skewness variable in the HFI identification for the 36-month horizon). These two results

are fully consistent with the theoretical predictions.

We have estimated an unconstrained version of this regression (see Table D in Appendix G).

Results for PPI products are broadly robust, although the degree of significance decreases a bit,

presumably owing to multicolinearity. Coefficients associated with placebo moments are never

significant at 5% and only significant twice at 10% (note that given we consider results for 6

specifications and 3 placebo moments, the fraction of significant coefficients is in line with what

one would expect under the null of no effect).

In the case of CPI products (Panel B of Table 4), support for the theoretical predictions is -as

with the baseline specification- somewhat more mixed. The coefficient on Kurt/Freq is positive

and significant in only half of the cases. The coefficient associated with the “placebo” moments

are in some cases significant, mainly at the 10% level (in 6 cases out of 18).

5 Robustness analysis

This section explores the robustness of our findings with respect to several dimensions: i) we test

whether our main results are driven by products with extreme values of CIRP , as the distribution

of CIRP values shows some very large positive and negative values - i.e. possible outliers; similarly,

we present results removing products with extreme values of frequency of price changes, kurtosis

or the ratio Kurt/Freq; ii) we investigate whether our results are robust to kurtosis’ measurement
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issues related to product heterogeneity, or very large or very small values of price changes; iii) for

CPI products, we investigate the extent to which sales and promotions affect the results; iv) we

run regressions where we include sectoral effects to investigate which sources of sectoral variations

are important to explain the relation between CIRP and Kurt/Freq ratio (across or within broad

sectors); v) we report results using the 2-year German bond instead of the 3-month Euribor when

identifying the model using a high-frequency identification with external instruments strategy; vi)

finally, we report results for a subsample which excludes products with a large drift in prices.

5.1 Removing extreme values of CIRP , Freq, Kurt or Kurt/Freq

Our first robustness exercise consists of checking whether our main results are driven by some

products for which the cumulative response of prices, frequency or kurtosis of price changes, is

either extremely low or extremely high. For that we define 4 sub-samples, considering separately

CPI and PPI products, in which we remove 5% of products corresponding to the 2.5% largest

or the 2.5% smallest values for: (i) the CIRP , (ii) ratio kurtosis over frequency, (iii) kurtosis of

non-zero price changes or (iv) frequency of price changes.27 We run our baseline regression (as well

as unconstrained specifications) on each of these subsamples. Results of robustness regressions

are all contained in tables in Appendix G (see Table E for the constrained specification with

PPI products, Table F for CPI products , and Table G and Table H for results of unconstrained

specifications).

For PPI products, removing products with extreme values of CIRP (Panel A of Table E), ratio

Kurt/Freq (Panel B), kurtosis (Panel C), or frequency (Panel D), does not alter our baseline

conclusions: the slope coefficient associated with the ratio Kurt/Freq is positive and significantly

different from 0, and estimated coefficients are very close to the ones estimated in our baseline ex-

ercise. Similarly, in unconstrained regressions, results are in line with the ones using the full sample

of products: all the results are consistent with the theoretical predictions including the equality of

coefficients in absolute values for slope coefficients associated with frequency and kurtosis.

For CPI products, in the constrained model, results obtained when removing ’extreme’ prod-

27For CPI, in each subsample, 10 different products are excluded whereas for PPI 5 different products are excluded.
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ucts are in line with baseline results: in most specifications, the ratio Kurt/Freq is positively

related with CIRP but weakly statistically different from 0. The strongest relationship is obtained

when we exclude extreme values of kurtosis. For the unconstrained specification, in all cases, the

coefficient associated with kurtosis is positive and significantly different from 0 (in most cases at 1%

level) whereas the coefficient associated with frequency is negative and statistically significant in a

majority of cases. However, the estimated parameter associated with frequency is found positive

or non-significantly different from 0 in several cases for the model using Cholesky identification

and a long-run restriction. Overall, for CPI products, results are more mixed and the negative

relationship between frequency and CIRP is less clear.

5.2 Issues with the measurement of kurtosis

The measurement of Kurtosis is known to be severely affected by unobserved heterogeneity. We

run robustness regressions in which we use a measure of kurtosis, based on Alvarez, Lippi, and

Oskolkov (2020), that takes into account product-level unobserved heterogeneity (Appendix E pro-

vides details on how we compute this robust measure of kurtosis). Results (reported in Table I of

Appendix G) are very much in line with the ones in our baseline regressions. For PPI, the coeffi-

cient associated with the Kurt/Freq ratio is positive, and significant in all specifications, whereas

for CPI this is the case in two of the three specifications. In the unconstrained regression, results

are very consistent with theoretical predictions for both PPI and CPI products in the specifica-

tion using a Cholesky decomposition identification and imposing the long run restriction. In the

two other specifications, most results of unconstrained specifications are in line with theoretical

predictions.

Another possible measurement issue is the high sensitivity of kurtosis to the definition of price

change outliers, namely here to either very large, or very small price changes, in absolute values.

In the baseline regressions, we have used kurtosis measures calculated on the distribution of price

changes smaller than 15% for PPI price changes and 25% for CPI price changes (i.e. 5% of all

price changes in both cases) and we have excluded price changes below 0.1% in both cases. We

here test the robustness of our results to modifying the thresholds defining extreme price changes.
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In a first exercize, we investigate the role of large price changes and we set the thresholds defining

extreme values to 25% for PPI price changes and 35% for CPI price changes (which corresponds

to excluding about 2% of all price changes). In a second exercise, we set the threshold for small

price changes to 0.5% (which corresponds to about 5% of all price changes).28 The results overall

remain in line with the baseline results (see Table K and Table J in Appendix G). Standard errors

of coefficients associated with kurtosis are however much higher, lowering the significance of the

estimated coefficients, in particular for large producer price changes.

5.3 Role of sales for CPI products

For CPI products we further investigate robustness by excluding products for which price changes

are mainly due to sales. The extent of sales could indeed affect price adjustment moments even if

we have removed price changes observations due to sales in the calculation of these moments. In

particular, if a very large majority of price adjustments are due to sales or promotions in one sector,

the pricing moments excluding these changes might be not very representative of the typical price

changes. We thus run robustness exercises removing all food, clothing/footwear and furnishings

goods, as within these broad sectors, most products are largely affected by seasonal sales and

replacements.29 In a second exercise, we exclude CPI products for which more than 10% of all

price changes due to sales (which corresponds to the median value among all CPI products).

When removing the three broad sectors that are mostly affected by seasonal sales (Panels A

and B of Table L in Appendix G), we find a positive and significant effect of the ratio kurtosis

over frequency in all specifications. In unconstrained specifications, we also find that estimated

coefficients associated with both frequency and kurtosis have the predicted sign and are significant.

In the specification using the Cholesky identification and imposing a long-run restriction, we also

cannot reject that the equality of coefficients in absolute values for slope coefficients associated

with frequency and kurtosis (as predicted by the theory).

When removing products for which the share of sales in price changes is higher than that for

28We have also run similar exercises with other definitions of small and large price changes and conclusions are
very similar.

29These products correspond to COICOP 01.1, 03 and 05 in the product classifications.
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the median product, the coefficient associated with the Kurt/Freq ratio is larger than in the

baseline case, but still not significant in the specification Cholesky imposing a long run restriction.

In the unconstrained specification of the regression, frequency has a negative and significant effect,

whereas kurtosis has a positive effect but only significant in the “HFI IV” specification. In this

exercise, however, the number of products, hence the sample size, is much more limited than in

other regressions.

5.4 Including Product-level “fixed effects”

We run regressions in which higher-level sectoral “fixed-effects” are included, to investigate whether

the relation between CIRP and the pricing-moments still holds within a more disaggregated level

of sectoral breakdown. This exercise informs us on the sources of product variability that help

identify the relation between CIRP and the cross sectional moments: broad sector differences

versus within-sector variability. For that, we add sectoral fixed effects at the 2-digit level for

both CPI and PPI products (there are 38 such “intermediate aggregation level” sectors for the

CPI, and 24 in the case of the PPI). Results are reported in Table M in Appendix G. For PPI

products, adding sectoral dummy variables weakens the significance of the estimated parameters,

but the results are qualitatively and -for most of coefficients- quantitatively the same as in our

baseline regressions. The results are again consistent with the theoretical predictions: for CPI the

Kurt/Freq ratio is positive and significant in all specifications. In the specifications ’Cholesky

with long run restriction’ and ’HFI with long run restriction’, both kurtosis and frequency have

a significant effect with the expected sign. We note however that the addition of sectoral fixed

effects significantly reduces the sources of cross-sectional variations, lowering the precision of the

estimates.

5.5 2-year German Bond Rate

In this robustness, we alter the policy rate used in the FAVAR estimation where the shock is

identified using an external instrument approach. The main motivation is that over the last part

of our sample the short-run policy rate was arguably constrained by the proximity of the lower
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bound for interested rates, and the ECB engaged in unconventional monetary policies intended to

influence long term interest rates.30 We use the 2-year German bond rate, a relevant risk-free long

term interest rate, instead of the 3-month Euribor rate.31 Results using this specification of the

FAVAR model are reported in Appendix D.32

Results relating sectoral CIR from this FAVAR model and the sufficient statistic, for PPI

products, are in line with the baseline (see Table N in Appendix G). The coefficient associated

with the Kurt/Freq ratio is positive and significantly different from 0 (and we cannot even reject

the coefficient being equal to the predicted value 0.16 and the intercept being equal to −T for both

horizons). In the unconstrained specification, the frequency and kurtosis have significant effect and

we cannot reject the equality of the absolute values of these coefficients. For CPI products, only the

frequency has a significant coefficient in the case with long-un restriction, whereas the ratio kurtosis

over frequency has no significant effect. In the case without imposing the long run restriction, the

ratio has the positive expected sign.

5.6 Removing Products with Sizeable Drifts in Price Levels

The theoretical predictions of the model are derived under the assumption of small inflation. While

this assumption is clearly fulfilled for the aggregate inflation rate in France on our sample period, a

concern is that for some specific sectors it could not be the case. Table 1 provides some statistics on

the average product-specific inflation rates in absolute values. Product-level inflation rates (taken

in absolute value) are typically small as well: average and median inflation rates are about 1.5%

per year whereas the third quartiles of inflation distribution are around 2%. In this last robustness

exercise, we remove all products for which we observe a non-small average inflation rate (in absolute

values). In practice, we define small inflation rates as products with an average annual inflation

lower than 5% in absolute values.33 For PPI products, only two products are removed, whereas

30Note however that the policy rate was negative from 2014, and statements by the ECB indicate that the lower
bound was not actually reached afterward.

31Jarocinski and Karadi (2020) use the 1 year and 2 year German bond as a policy variable in their analysis of
ECB monetary policy.

32See in particular Figure L and Figure M in Appendix D for aggregate and sector IRF and Figure N for scatter
plots relating CIR and price change moments.

33Gagnon (2009), Nakamura et al. (2018) or Alvarez et al. (2019) for evidence on price rigidity in higher inflation
rates, in Mexico, US and Argentina, they tend to show that when inflation is below 5%, patterns of price rigidity
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for CPI 9 products are removed. For both PPI and CPI, results are very consistent with the ones

obtained in the baseline regressions even if coefficients are less significant in some specifications.34

6 Conclusion

This paper has presented results of an empirical test of the predictions of the sufficient-statistic

proposition in a low-inflation economy, which relates the real effects of monetary policy shock to

the ratio of kurtosis over the frequency of price changes.

To accomplish this goal we first estimated sectoral responses to a monetary shock for about

120 manufacturing goods and 220 consumer products in France, using a Factor Augmented VAR.

Our monetary shock was identified using several identification schemes and long-term restrictions

to test the robustness of our findings. From this estimation, we have calculated for each product

the cumulative impulse response of prices over long horizons. Then, using micro data underlying

French CPI and PPI, we measured cross sectional moments of price changes corresponding to

these sectors. Finally, we estimated regressions relating CIR of prices to the ratio Kurt/Freq to

investigate empirically the predictions of the sufficient-statistic proposition.

For PPI products, the empirical results are fully in line with theory: the sign of the regression

coefficients, and even the amplitude of the coefficients, correspond to the ones predicted by the

theory. This result holds for a variety of FAVAR specifications and robustness tests (taking into

account for measurement issues for instance). Moreover, the coefficients associated with both the

frequency and the kurtosis of price changes are statistically significant, have the expected sign, and

we cannot reject that the size of the coefficient associated with frequency is the same in absolute

value as the one associated with kurtosis, as theory predicts. Moreover, “placebo” tests show that

moments not suggested by the theory are not correlated with the CIR of prices. For CPI products

the results are mixed and are less robust than for PPI: the ratio Kurt/Freq has a positive and

significant sign in several specifications, but this is less systematic than for PPI products. Similarly,

we find that both the frequency and the kurtosis, when entering separately in the regressions, have

(in particular, frequency of price changes) are rather unchanged.
34Using a threshold at 4% for defining ’small’ vs ’large’ inflation rates leads to similar results.
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the expected sign and size in most, but not all, specifications. One candidate explanation for the

difference between the CPI and the PPI results might come from the fact that (even if we have

attempted to remove observations affected by sales) the sufficient statistic result holds in a setting

where the pricing strategy of firms features no seasonal sales or price plans, both of which are

empirically more prevalent for CPI than for PPI.
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Figures and Tables

Figure 1: Sectoral Responses of PPI and CPI to a Contractionary Monetary Shock

Note: y-axis: log points in deviation from the ”steady state”. Left panel sectoral IRFs of PPI, right panel sectoral
IRFs of CPI. In both panel: blue line IRF of aggregate time series, dashed red lines sectoral IRFs, thick red line
arithmetic average of sectoral IRFs.
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Figure 2: Cross-sector Distribution of Frequency and Kurtosis of Price Changes (CPI-PPI)
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Note: histograms report the distribution of frequency and kurtosis separately for 118 PPI products and 227 CPI
products.
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Figure 3: Correlation CIRP - Log ratio Kurt
Freq

Note: the figure plots for each of the three FAVAR specifications the product-specific CIR (at the horizon 36
months) and the log of the ratio kurtosis over frequency of price changes. The top panel (red dots) reports results
for PPI products whereas the bottom panel (blue dots) reports results for CPI products.
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Table 1: Micro Moments of Price Adjustments: Descriptive Statistics

Nb Mean Q1 Q2 Q3 SD
products

Panel A: Frequency of price changes
CPI 223 0.106 0.039 0.088 0.143 0.104
PPI 118 0.190 0.086 0.123 0.185 0.208
Panel B: Kurtosis of non-zero price changes - with robustness
CPI - baseline 223 5.039 3.355 4.434 5.652 2.952
PPI - baseline 118 5.068 3.927 4.615 5.857 1.851

CPI - outlier |∆p| < 0.5% 223 4.616 3.559 4.281 5.166 1.738
PPI - outlier |∆p| < 0.5% 118 4.777 3.183 4.220 5.411 2.821

CPI - outlier |∆p| > 35% 223 6.273 3.880 5.471 7.207 4.316
PPI - outlier |∆p| > 25% 118 7.805 5.532 6.956 9.042 3.952

CPI - hetero (S=5) 223 3.424 2.227 3.194 3.834 2.013
PPI - hetero (S=5) 118 3.917 2.638 3.435 4.497 2.036
Panel C: Mean of non-zero price changes (percent)
CPI 223 1.219 0.294 0.947 2.074 2.124
PPI 118 0.793 0.204 0.722 1.405 0.906
Panel D: Standard deviation of non-zero price changes (percent)
CPI 223 7.587 6.018 7.298 9.251 2.307
PPI 118 4.149 3.606 4.134 4.674 0.872
Panel E: Skewness of non-zero price changes
CPI 223 -0.261 -0.419 -0.250 -0.098 0.367
PPI 118 -0.274 -0.559 -0.275 0.028 0.444
Panel F: Average inflation (in percent, absolute values)
CPI 223 1.883 0.663 1.531 2.368 2.123
PPI 118 1.556 0.903 1.327 1.984 1.111

Note: Calculations on CPI micro data are made over the period 1994-2019 (30 million of monthly price quotes).
Prices of rents, cars, fresh food products, electricity and clothing goods are non-available or excluded. Price
changes due to sales and promotions are excluded (using the INSEE flag). VAT change and euro–cash changeover
periods are excluded as well. Calculation on PPI data are made over the period 1994-2005. We here report some
descriptive statistics of the distribution of product-specific moments of price rigidity for PPI and CPI products
(statistics are unweighted). ’Frequency’ reports the ratio between the number of price changes and the total
number of prices. ’Mean’, ’Standard deviation’, ’Skewness’ and ’Kurtosis’ are calculated on the distribution of
non-zero log price changes, expressed in percentages. In our baseline calculations, we have excluded all price
changes below than 0.1% in absolute values and larger than 25% in absolute values for CPI price changes and 15%
for PPI price changes. Panel F provides statistics on the average product-specific inflation in absolute values over
the period 2005-2019.
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Table 2: Baseline OLS Regression Results : “Constrained” Specification

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: PRODUCER PRICES

Kurt/Freq 0.0669** 0.0974*** 0.690*** 1.124*** 0.192*** 0.242***
(0.0326) (0.0355) (0.220) (0.341) (0.0614) (0.0801)

Constant -20.57*** -35.16*** -48.02*** -81.88*** -34.27*** -52.21***
(2.130) (2.199) (13.43) (20.51) (3.638) (4.799)

Observations 118 118 118 118 118 118
R2 0.041 0.082 0.117 0.135 0.131 0.118

PANEL B: CONSUMER PRICES

Kurt/Freq -0.0170 -0.00245 0.115* 0.233** 0.0495** 0.0720**
(0.0165) (0.0199) (0.0658) (0.105) (0.0242) (0.0315)

Constant -11.64*** -27.36*** -21.20* -47.72*** -34.43*** -54.70***
(2.809) (3.285) (10.81) (17.13) (3.434) (4.419)

Observations 223 223 223 223 223 223
R2 0.004 0.000 0.014 0.023 0.019 0.024

Note: this table reports results of OLS regressions (equation 10) where the endogenous variable is the

product-specific CIR CIR
Pj

T (expressed in %) and RHS variable is the ratio Kurt/freq. Each observation

corresponds to a disaggregate CPI or PPI product. For CPI, the level of disaggregation is 5 digit-level of the

ECOICOP classification (ie. ‘01.1.1.1’) whereas for PPI, the product level is the 4-digit level of the NACE rev2

classification of sectors. PPI covers the manufacturing sectors whereas CPI covers about 60% of the whole French

CPI (main products excluded are rents, cars, utilities like electricity). Robust standard errors are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Regression Results - “Unconstrained” Specification

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: PRODUCER PRICES
Freq/F̄ -2.501* -3.153** -23.65*** -37.41*** -6.004** -7.239*

(1.279) (1.314) (8.897) (13.96) (2.776) (3.761)

Kurt/K̄ 3.663* 4.665** 28.83** 45.17** 6.662** 7.922*
(1.897) (1.995) (11.66) (17.59) (3.100) (4.010)

Constant -18.82*** -32.42*** -23.13* -40.64** -26.56*** -42.36***
(2.208) (2.166) (12.73) (18.61) (3.011) (3.960)

Observations 118 118 118 118 118 118
R2 0.106 0.161 0.240 0.259 0.217 0.179

PANEL B: CONSUMER PRICES
Freq/F̄ -4.920* -8.540** -54.17*** -91.14*** -16.36*** -21.30***

(2.809) (3.331) (13.77) (21.32) (3.894) (4.812)

Kurt/K̄ 4.359* 5.657** 6.648 8.581 7.132*** 9.175***
(2.328) (2.594) (4.523) (7.023) (2.201) (2.806)

Constant -12.61*** -24.70*** 36.70*** 55.84*** -20.74*** -36.08***
(3.684) (4.267) (13.17) (20.40) (4.907) (6.274)

Observations 223 223 223 223 223 223
R2 0.065 0.132 0.477 0.529 0.350 0.342

Note: this table reports results of OLS regressions (equation 11) where the endogenous variable is the product-

specific CIR CIR
Pj

T (expressed in %) and RHS variables are the ratio of the product-level frequency over its average

Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄. Robust standard errors are reported

in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Regression Results - Placebo Specification

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: PRODUCER PRICES
Kurt/Freq 0.0849* 0.110** 0.715** 1.130** 0.168** 0.202**

(0.0477) (0.0488) (0.284) (0.432) (0.0750) (0.0989)

Mean -0.418 -0.479 -6.211 -9.930 -1.212 -1.408
(0.905) (1.000) (5.311) (8.251) (1.432) (1.857)

Skewness 1.759 1.006 -5.014 -12.47 -4.613 -6.889*
(3.434) (3.100) (15.18) (21.06) (2.783) (4.109)

Standard dev. -0.940 -0.749 -4.317 -5.494 0.219 0.726
(1.016) (1.083) (7.037) (10.86) (1.964) (2.535)

Constant -16.65*** -31.95*** -27.65 -54.88 -34.44*** -54.26***
(4.669) (4.791) (26.68) (40.24) (7.221) (9.552)

Observations 118 118 118 118 118 118
R2 0.054 0.089 0.125 0.142 0.140 0.130

PANEL B: CONSUMER PRICES
Kurt/Freq -0.0529** -0.0308 0.143 0.330** 0.0585* 0.0923**

(0.0206) (0.0253) (0.0902) (0.144) (0.0348) (0.0455)

Mean 1.636** 1.498* 1.416 0.441 0.550 0.380
(0.755) (0.826) (1.902) (3.081) (0.864) (1.159)

Skewness 2.109 5.033 16.84 30.51 11.30*** 15.52***
(3.699) (4.102) (12.65) (20.65) (4.227) (5.603)

Standard dev. -1.992** -1.732* 3.426 8.226 0.332 0.795
(0.860) (1.044) (3.666) (5.727) (1.166) (1.486)

Constant 5.271 -12.17 -47.09 -111.4* -35.49*** -58.97***
(7.708) (9.376) (37.03) (58.47) (11.33) (14.45)

Observations 223 223 223 223 223 223
R2 0.067 0.038 0.027 0.050 0.036 0.045

Note: this table reports results of OLS regressions (equation 10) where the endogenous variable is the product-

specific CIR CIR
Pj

T (expressed in %) and RHS variables include the product-specific ratio Kurt/freq but also three

other moments of the product-specific price change distribution: the average price change Mean, the skewness of

price changes Skewness, and the standard deviation of price changes StandardDev.. Robust standard errors are

reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Web Appendix of:

Empirical Investigation of a
Sufficient Statistic for Monetary Policy Shocks

Fernando Alvarez, Herve le Bihan, Andrea Ferrara, Erwan Gautier, Francesco Lippi

A Analytics of the generalized random menu cost model

We describe the price setting problem for a firm in steady state using the random menu cost model
of Caballero and Engel (1999, 2007), which covers a vast class of sticky-price models.

The firm’s problem. The firm maximizes the expected discounted value of profits and chooses
the optimal times and size of price adjustment as a function of its state x, as encoded in the value
function v(x) defined in the appendix. A second order approximation of the profit function at
the optimal price gives a quadratic period return Bx2, where the constant term B relates to the
curvature of the profit function.35 The firm’s value function solves the following HJB equation

r v(x) = min

{
Bx2 + v′(x)µ+

σ2

2
v′′(x) + κ

∫ Ψ

0
min

{
ψ + min

z
v(z)− v(x) , 0

}
dG(ψ) , r

(
Ψ + min

z
v(z)

)}
The first argument in the curly bracket represents the continuation value with a flow cost Bx2 and the

usual expected change in the value function, which includes the possibility to adjust if the firm draws a
sufficiently small menu cost. For a firm with a gap x that draws a menu cost ψ the net cost effect of
adjusting is ψ+ minz v(z)− v(x), which is optimally chosen by the firm only when it is smaller than zero.
The second argument in the curly bracket represents the firms’ option to reset the gap at any moment
by paying the fixed cost Ψ. The value function features the smooth pasting conditions: v′(X) = v′(X̄) =
v′(x∗) = 0 where x∗ = arg minx̃ v(x̃) is the optimal price gap chosen by a firm that adjusts and X and X̄
delimit the state space so that x ∈ [X, X̄], and value matching conditions v(X) = v(X̄) = v(x∗) + Ψ.

Mapping the model to observables. The density f solves the following Kolmogorov forward
equation:

f(x)Λ(x) = −µf ′(x) +
σ2

2
f ′′(x) for all x ∈ (X, X̄) , x 6= x∗ (16)

with boundary conditions: lim
x↓x∗

f(x) = lim
x↑x∗

f(x); 1 =

∫ X̄

X
f(x)dx and lim

x→X̄
f(x) = lim

x→X
f(x) = 0 .

Notice how the cross sectional distribution of price gaps f(x) is fully determined by the generalized hazard
function: Also, note that density is zero at the boundaries of the domain.36

35See Appendix B in Alvarez and Lippi (2014) for a detailed derivation of the approximation.
36This is an implication of X and X̄ being exit points, for every model where µ/σ2 is finite. In the case where

the domain of x is unbounded, then the zero density is a requirement for integrability.
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The distribution of price changes has density q and two mass points at the boundaries of the inaction
region:

q(x∗ − x) =
f(x)Λ(x)

N
for all x ∈ [X, X̄] (17)

dQ(x∗ − X̄) = −σ
2

2

f ′(X̄)

N
, dQ(x∗ −X) = +

σ2

2

f ′(X)

N

where the number of price changes satisfies:

N(µ) =

∫ X̄

X
Λ(x)f(x)dx+

σ2

2
f ′(X)− σ2

2
f ′(X̄) (18)

and the notation emphasises the dependence of the frequency on the rate of steady state inflation µ.

Computation of CIR for the zero drift case (µ = 0). The contribution to the cumulative
impulse response of a firm with price gap x is

m(x) = −E
[∫ τ

0
e−Λ(x)tx(t)dt |x(0) = x

]
(19)

where τ is the stopping time defined as the first time the price gap hits the barriers ±X̄. In words, m(x)
is the expected (cumulative) price gap of a firm that starts with a gap x.37

The expectation in the right hand side of equation (19) is with respect to the process for x, a jump-
diffusion with jump intensity Λ(x), diffusion variance σ2, and zero drift. The function m : [−X,X]→ R
is once continuously differentiable, antisymmetric around x = 0, and satisfies:

m(x)Λ(x) = −x+
σ2

2
m′′(x) for all x at which Λ is continuous (20)

0 = m(X) if X <∞ and lim
x→∞

|m(x)|
x

≤ 1

infy Λ(y)
if X =∞ . (21)

Now we can define the cumulative impulse response to a monetary shock of size δ as

CIR(δ) =

∫ X̄

−X̄
m(x)f(x+ δ)dx . (22)

Aggregation across heterogenous firms. We briefly discuss how the above results can be applied
to economies composed of heterogenous firms. Assume that there are S groups of firms with different
parameters, each with an expenditure weight es > 0, Ns price changes per unit of time, and a distribution
of price changes with kurtosis Kurs. In this case, after repeating the arguments above for each group and
aggregating, we obtain that the area under the IRF of aggregate output for a small monetary shock δ is

CIR(δ) =
δ

6ε

∑
s∈S

es
Kurs
Ns

+ o(δ2) =
δ

6ε
D
∑
s∈S

dsKurs + o(δ2) (23)

37The definition above uses the steady state decision rule Λ(x), thus ignoring the general equilibrium feedback
effect of the shock on the firm’s decision. In Proposition 7 of Alvarez and Lippi (2014) it is shown that, given a
combination of the general equilibrium setup in Golosov and Lucas (2007) and the lack of the strategic complemen-
tarities, these general equilibrium effects are of second order. In addition, we use the fact that after the first price
change the expected contribution to output of each firm is zero, since positive and negative output contributions
are equally likely, so m(0) = 0. This allows us to characterize the propagation of the monetary shocks without
tracking the time evolution of the whole price gap distribution.
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where D is the expenditure-weighted average duration of prices D ≡
∑

s∈S
es
Ns

, and ds ≡ es
NsD

are weights
that take into account both relative expenditures and durations. When all groups have the same durations,
then ds = es and the CIR is proportional to the average of the kurtosis of the sectors.38 However, if groups
are heterogenous in duration (or expenditures), then the kurtoses of the groups with longer duration (or
higher expenditures) receive a higher weight in the computation of the CIR.39

The proof of sufficient statistic result, equation (6). First note that the identity

N · V ar = σ2 (24)

holds in the model. Let x(0) = 0. Consider the process z(t) ≡ x(t)2 − σ2 t for t ≥ 0. Using Ito’s
lemma we can verify that the drift of x2 is σ2, and hence z(t) is a Martingale. Let τ be a stopping time,
i.e. an instant where a price adjustment occurs (anywhere in the state space, including the boundaries),
so that x is reset at x(0) = 0. By the optional sampling theorem z (τ), the process stopped at τ , is

also a martingale. Then E
[
z(τ)

∣∣∣ x(0)
]

= E
[
x(τ)2

∣∣∣ x(0)
]
− σ2E

[
τ
∣∣∣ x(0)

]
= x(0) = 0. Since N =

1/E
[
τ
∣∣∣ x(0)

]
and V ar = E

[
x(τ)2

∣∣∣ x(0)
]

we get the identity in equation (24).

For simplicity, we focus next on the case with unbounded support X̄ →∞ (the logic for the case with
bounded support is identical but the equations are slightly more cumbersome). Using the definition of
the density of price changes in equation (17) we can rewrite the identity as∫ ∞

−∞
x2Λ(x)f(x)dx = σ2 (25)

it is then straightforward to write the formula for kurtosis over 6N as:

Kurt

6N
=

∫∞
−∞ x

4Λ(x)f(x)dx

6
(∫∞
−∞ x

2Λ(x)f(x)dx
)2 =

∫∞
−∞ x

4Λ(x)f(x)dx

6σ4

where the last passage uses equation (25). Using the Kolmogorov forward equation,∫ ∞
−∞

x4Λ(x)f(x)dx =
σ2

2

∫ ∞
−∞

x4f ′′(x)dx

Integrating by parts twice gives ∫ ∞
−∞

x4Λ(x)f(x)dx = 6σ2

∫ ∞
−∞

x2f(x)dx

This allows us to write

Kurt

6N
=

∫∞
−∞ x

2f(x)dx

σ2
(26)

38The effect of heterogeneous N is well known for the Calvo model: due to Jensen’s inequality D differs from the
(reciprocal of) the average of N ’s, see for example Carvalho (2006) and Nakamura and Steinsson (2010).

39Suppose for instance that a fraction of firms have flexible prices (zero duration in our model, or infinitely many
price changes per unit of time), as in Dotsey and Wolman (2020). The above formula implies that the group of
the flexible price firms are excluded (zero duration yields a zero weight), and that the cumulative impulse response
(CIR) is computed on the mass of firms with sticky prices. Notice that this is different from computing the CIR as
the ratio of the cross-sectional average kurtosis and the average frequency. Since the latter is diverging because of
the firms with flexible prices, the CIR computed this way would be zero, while obviously it is not.
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Recall that we have a system of two equations:

Λ(x)f(x) =
σ2

2
f ′′(x) , Λ(x)m(x) =

σ2

2
m′′(x)− x

Eliminate Λ to get:

σ2

2

m(x)f ′′(x)

f(x)
= −x+

σ2

2
m′′(x)

Multiply both sides by f(x)x and rearrange:

σ2

2
[m(x)f ′′(x)−m′′(x)f(x)]x = −x2f(x)

Integrate both sides from 0 to ∞:

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx = −
∞∫

0

x2f(x)dx

Perform integration by parts in the left-hand side using the fact that [m(x)f ′(x)−m′(x)f(x)]′ = m(x)f ′′(x)−
m′′(x)f(x):

σ2

2

∞∫
0

[m(x)f ′′(x)−m′′(x)f(x)]xdx =
σ2

2

[m(x)f ′(x)−m′(x)f(x)]x

∣∣∣∣∣
∞

0

−
∞∫

0

[m(x)f ′(x)−m′(x)f(x)]dx


=− σ2

∞∫
0

m(x)f ′(x)dx

where the last equality uses integration by parts again. We used E[m(x)] < ∞ and m(·) being almost
linear at infinity to justify setting f ′(x)m(x)x and f(x)m′(x)x at infinity to 0. Hence, we have

σ2

∞∫
0

m(x)f ′(x)dx =

∞∫
0

x2f(x)dx

Plugging this result in equation (26) we have

Kurt

6N
=

∫ ∞
−∞

m(x)f ′(x)dx

It appears from the CIR definition in equation (22) that the right hand side is just the first derivative of
the CIR with respect to δ, evaluated at δ = 0, or CIR′(0). This completes the proof. �
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B FAVAR estimation

The Factor Augmented Vector Autoregression (FAVAR) was originally developed by Bernanke, Boivin,
and Eliasz (2005) and by Boivin, Giannoni, and Mihov (2009). Stock and Watson (2016) provide also a
clear explanation of the model.

Let Yt be a vector of observable economic variables with dimension M x 1, M ≥ 1, and let F̃t be a
vector of unobserved factors with dimension K x 1, K ≥ 1. Assume that the dynamics of the economy is
driven by (Y ′t , F̃t

′
) which follows the transition equation:[

F̃t
Yt

]
= Φ(L)

[
F̃t−1

Yt−1

]
+ vt (27)

where Φ(L) is a lag polynomial of finite order and vt is an error term with zero mean and covariance
matrix Q. While equation (27) looks like a VAR, recall that Ft is unobserved and, thus, we cannot directly
estimate equation (27). However, the factors F̃t are interpreted as representing forces that potentially
affect many economic variables from which we can estimate the factors. Indeed, assume that a large
number of time series Xt, called informational time series, are related to the observed variables Yt and to
the unobservable factors F̃t by the following equation:

Xt = ΛFt + et (28)

where Ft ≡ [F̃t Yt]
′ and et is a vector N x 1 of error terms with zero mean40. Notice that the number

of informational time series, N , must be large which means N is much greater respect to the number of
variables that drives the economy (Ft and Yt), i.e. N > K + M , and potentially N can be bigger than
the time period under consideration, T . Moreover, notice that Ft can always capture arbitrary lags of
fundamental factors, thus it is not restrictive to assume that Xt depends only on the current values of
the factors41.
Under the above assumptions, it is possible to estimate the model, using a two-step approach42: in the
first step, the common factors are estimated extracting the first K principal components, Ĉ(0), from the
information variables, Xt. Indeed, as shown by Stock and Watson (2002), for N large enough and if the
number of principal components used are at least as the true number of factors, the principal components
of Xt span the space generated by the factors F̃ and the observable variables Yt; thus, the principal
components represent independent but arbitrary linear combinations of F̃t and Yt. However, we want
that these combinations do not depend on Yt and that they are only independent combinations of the

factors. For this reason, the factors are estimated as follow. Regress Xt on Ĉ(0) and Yt to obtain B̂
(0)
r , the

coefficient of Yt. After compute X̃
(0)
t = Xt− B̂(0)

r Yt and estimate Ĉ(1) as the first K principal components

of X̃
(0)
t . Iterate until convergence of B̂

(i)
r to obtain the desired estimated factors, ˆ̃Ft. The second step

consists in estimating equation (27) as a structural VAR43, replacing Ft with F̂t ≡ [ ˆ̃Ft Yt]
′. Indeed, we

can rewrite equation (27) as
F̂t = Φ(L)F̂ t− 1 + vt (29)

where F̂+
t ≡ [F̂t Yt]

′. Assuming vt = Hεt, it is clear that equation (29) can be treated as a structural
VAR.
We are left with only one open question: how is it possible to estimate the IRFs of Xt? Consider again

40If factors are estimated using a principal components analysis, errors can display a small amount of cross-
correlation that must vanish as N goes to infinity. See Stock and Watson (2002) for a detailed discussion.

41For this reason Stock and Watson (1999) refer to equation (28) as a dynamic factor model.
42The model can be estimated also using a single-step Bayesian likelihood approach.
43In our application, we estimate the structural VAR using a Cholesky decomposition. However, any other

approach can be used.
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equation (29) and assume that the MA representation exists. Denoting the MA coefficient with Ψ(L), we
obtain

F̂t = Ψ(L)Hεt (30)

Moreover, using F̂t instead of Ft in equation (28) and replacing in this equation equation (30), we get

Xt = ΛΨ(L)−1Hεt + et (31)

Equation (31) links the information variables, Xt, to the shocks and provides the theoretical framework
to retrieve the IRFs of Xt. However, in practice, the IRFs of Xt are not estimated using the MA

representation and, thus, equation (31). Indeed, let ̂IRF (A) be the estimated IRFs of the time series At
to a given shock. The IRFs of Xt is calculated as

̂IRF (X) = β̂ ∗ ̂IRF (F̂ ) (32)

where ̂IRF (F̂ ) is the VAR estimated IRF of F̂t and β̂ is the estimated coefficient of the regression of Xt

on F̂t.

C A Filter for the Euribor

For the purpose of our empirical test, we want the empirical monetary shock to capture a monetary policy
shocks, characterized by a transient impact on inflation and output. We filter the 3-month Euribor so
as to ensure this property, as with unfiltered data it is not fulfilled. One possible reason why it is not
fulfilled (unlike in typical VAR) is because in our sample period, on the euro area, this variable is not
stationary, as depicted in Figure A. We exploit two criteria to choose the value of the value of the HP
filter, λHP . Both criterion are based on the behavior of the IRFs of PPI and CPI time series as λHP

varies. We estimated the FAVAR model, for alternative values of filtered Euribor rates letting λHP vary
from 6 to 105.

One first criterion consists in considering the number of negative IRFs of PPI after two or three years,
since our strong prior is that after a contractionary monetary shock, prices should decline as compared to
the no-shock baseline. Thus, we are interested in estimating a FAVAR that is in line with this prediction.
The top panel of Figure B shows our finding: the number of negative IRFs is maximized around the value
of λHP of 500. The number of PPI sectors included in the analysis are 118 and for λHP =500 we have
around 100 sectors with negative IRF. Moreover, this curve is very flat around 500, as for any value of
λHP in between 200 and 3000, more than the 60% of the sectors have a negative IRF after two years or
three years.

As a second criterion to guide our choice of λHP , we consider the value of the aggregate IRF of PPI (or
CPI) to the contractionary monetary shock as a function of λHP . For PPI, these responses are reported
in the bottom panel of Figure B. This panel shows four different lines: we consider the response of an
aggregate time series of PPI after 24 or 36 months; and that of the arithmetic average of the sectoral
response of PPIs in addition to the response of the aggregate price index. In all cases, the minimum
response is found λHP equal to a value around 1000. Developing the same criteria for CPI, we obtain
very similar results, as depicted by Figure C. The only difference is that in the bottom panel for value of
λHP bigger than 104, the aggregate responses after two or three years become positive, implying that large
values of λHP would defeat our purpose. Overall, based on the above results, we select as our benchmark
to filter the 3-month Euribor an HP filter with λ = 1000.
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Some additional figures: Filtering of interest rate, Identification of mon-
etary policy shock

Figure A: 3-month Euribor: period 2005-2019
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Figure B: Response of sectoral PPI as a function of λ

Top panel: number of PPI sectors with a negative IRF after two or three years to a contractionary monetary shock
of 25 bp as a function of the HP filter parameter, λHP . Bottom panel: sectoral IRF of production prices to a
contractionary monetary shock of 25 bp as a function of the HP filter parameter, λHP ; blue and red lines represent
the IRF of the aggregate production price index after two and three years, respectively. Yellow and purple lines
show the IRF of the arithmetic average of all the production price sectors after two and three years, respectively.

viii



Figure C: Response of sectoral CPI as a function of λ

Top panel: number of CPI sectors with a negative IRF after two or three years to a contractionary monetary
shock of 25 bp as a function of the HP filter parameter, λHP . Bottom panel: sectoral IRF of consumer prices to a
contractionary monetary shock of 25 bp as a function of the HP filter parameter, λHP ; blue and red lines
represent the IRF of the harmonized index of consumer prices after two and three years, respectively. Yellow and
purple lines show the IRF of the arithmetic average of all the consumer price sectors after two and three years,
respectively.
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D Additional FAVAR Results

Cholesky - Long-run restriction

Figure D: Aggregate response to a contractionary monetary policy shock

y-axis: log points in deviation from the ”steady state”.
Top panel: 3-month Euribor IRF. Top right panel: production index IRF. Bottom left panel: production price
index IRF. Bottom right panel: IRF of the harmonized index of consumer prices
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Cholesky - No Long-run restriction

Figure E: Aggregate response to a contractionary monetary policy shock

y-axis: log points in deviation from the ”steady state”.
Top panel: 3-month Euribor IRF. Top right panel: production index IRF. Bottom left panel: production price
index IRF. Bottom right panel: IRF of the harmonized index of consumer prices
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Figure F: Sectoral Responses of PPI and CPI to a Contractionary Monetary Shock

y-axis: log points in deviation from the ”steady state”. Left panel sectoral IRFs of PPI, right panel sectoral IRFs
of CPI. In both panel: blue line IRF of aggregate time series, dashed red lines sectoral IRFs, thick red line
arithmetic average of sectoral IRFs.
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High-Freq. IV - Long-run restriction

Figure G: Aggregate response to a contractionary monetary policy shock

y-axis: log points in deviation from the ”steady state”.
Top panel: 3-month Euribor IRF. Top right panel: production index IRF. Bottom left panel: production price
index IRF. Bottom right panel: IRF of the harmonized index of consumer prices
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Figure H: Sectoral Responses of PPI and CPI to a Contractionary Monetary Shock

y-axis: log points in deviation from the ”steady state”. Left panel sectoral IRFs of PPI, right panel sectoral IRFs
of CPI. In both panel: blue line IRF of aggregate time series, dashed red lines sectoral IRFs, thick red line
arithmetic average of sectoral IRFs.
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Table A: Product-specific CIRP : Descriptive Statistics

Moments of the CIR distribution
Mean Std. Dev. min 5% 25% 50% 75% 95% max

PANEL A: PRODUCER PRICES
Cholesky - Long-run restriction
24 months -0.18 0.09 -0.64 -0.39 -0.18 -0.16 -0.14 -0.09 0.12
36 months -0.31 0.10 -0.72 -0.55 -0.32 -0.29 -0.27 -0.22 -0.06

Cholesky - No long-run restriction
24 months -0.18 0.57 -3.63 -1.50 -0.15 -0.02 0.04 0.22 0.35
36 months -0.33 0.87 -5.81 -1.72 -0.34 -0.06 0.02 0.28 0.57

High Frequency Instrument - Long-run restriction
24 months -0.26 0.15 -1.21 -0.50 -0.27 -0.21 -0.19 -0.11 -0.01
36 months -0.42 0.20 -1.58 -0.80 -0.44 -0.36 -0.32 -0.23 0.11

PANEL B: CONSUMER PRICES
Cholesky - Long-run restriction
24 months -0.13 0.22 -1.92 -0.38 -0.20 -0.12 -0.04 0.15 0.49
36 months -0.28 0.25 -2.44 -0.61 -0.32 -0.24 -0.16 -0.01 0.19

Cholesky - No long-run restriction
24 months -0.11 0.78 -7.40 -0.66 -0.14 0.01 0.14 0.38 1.41
36 months -0.27 1.24 -12.17 -1.16 -0.34 -0.07 0.16 0.49 1.97

High Frequency Instrument - Long-run restriction
24 months -0.30 0.29 -2.50 -0.84 -0.32 -0.23 -0.17 -0.07 0.02
36 months -0.48 0.38 -3.28 -1.22 -0.51 -0.39 -0.30 -0.16 -0.03

Note: this table reports descriptive statistics on the distribution of the product-specific CIR for the different

specifications and at two horizons (24 and 36 months). These statistics are computed over 118 products for PPI

and 223 products for CPI.
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Additional Scatter Plots CIRP - moments

Figure I: Correlation CIRP - Log ratio Kurt
Freq

- Cholesky Long-run restriction

Note: the figure plots the product-specific CIR (at the horizon 36 months) obtained in the FAVAR specification
using a Cholesky decomposition and imposing a long-run restriction and the log of the ratio kurtosis over
frequency of price changes (left panel), the log of frequency of price changes (center panel), the log of kurtosis of
price changes (right panel). The top panel reports results for PPI products whereas the bottom panel reports
results for CPI products.
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Figure J: Correlation CIRP - Log ratio Kurt
Freq

- Cholesky No Long-run restriction

Note: the figure plots the product-specific CIR (at the horizon 36 months) obtained in the FAVAR specification
using a Cholesky decomposition without imposing any long-run restriction and the log of the ratio kurtosis over
frequency of price changes (left panel), the log of frequency of price changes (center panel), the log of kurtosis of
price changes (right panel). The top panel reports results for PPI products whereas the bottom panel reports
results for CPI products.
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Figure K: Correlation CIRP - Log ratio Kurt
Freq

- HFI Long-run restriction

Note: the figure plots the product-specific CIR (at the horizon 36 months) obtained in the FAVAR specification
using a high-frequency instrument variable and imposing a long-run restriction and the log of the ratio kurtosis
over frequency of price changes (left panel), the log of frequency of price changes (center panel), the log of kurtosis
of price changes (right panel). The top panel reports results for PPI products whereas the bottom panel reports
results for CPI products.
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FAVAR - High-Freq. IV - German bond rate - Long-run restriction

Figure L: Aggregate response to a contractionary monetary policy shock

y-axis: log points in deviation from the ”steady state”.
Top panel: 3-month Euribor IRF. Top right panel: production index IRF. Bottom left panel: production price
index IRF. Bottom right panel: IRF of the harmonized index of consumer prices
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Figure M: Sectoral Responses of PPI and CPI to a Contractionary Monetary Shock

y-axis: log points in deviation from the ”steady state”. Left panel sectoral IRFs of PPI, right panel sectoral IRFs
of CPI. In both panel: blue line IRF of aggregate time series, dashed red lines sectoral IRFs, thick red line
arithmetic average of sectoral IRFs.

xx



Figure N: Correlation CIRP - Log ratio Kurt
Freq

- HFI 2-year German Bond Rate

Note: the figure plots for each FAVAR specification the product-specific CIR (at the horizon 36 months) and the
log of the ratio kurtosis over frequency of price changes. The top panel reports result for PPI products whereas
the bottom panel reports results for CPI products.
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Figure O: Correlation CIRP - Log ratio Kurt
Freq

, log(Kurt) and log(Freq) - HFI 2-year German Bond
Rate

Note: the figure plots the product-specific CIR (at the horizon 36 months) obtained in the FAVAR specification
using a high-frequency instrument variable and imposing a long-run restriction and the log of the ratio kurtosis
over frequency of price changes (left panel), the log of frequency of price changes (center panel), the log of kurtosis
of price changes (right panel). The top panel reports results for PPI products whereas the bottom panel reports
results for CPI products.
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E Kurtosis Measurement with Unobserved Heterogeneity

The measure of Kurtosis is particularly sensitive to unobserved heterogeneity. Measured kurtosis is
in particular known to suffer from an upward bias when a sample is composed of two (or more) sub-
populations with different variances. To investigate the robustness of our results with respect to such a
concern, we use an alternative measure of kurtosis derived along the lines of Alvarez, Lippi, and Oskolkov
(2020). The assumption underlying this correction, is that within a given product category, there are
several varieties (indexed by i = 1, ..., I) that are pooled. For instance, one could have various brands
of soda, in the case the brand of soda is not collected by the statistical office, or not disclosed to the
researcher. At a given date t, the price change for all varieties is driven by a common factor ∆p̃t, but the
variance differs across varieties, according to a scaling factor bi.

∆pit = bi∆p̃t for i ∈ I and t ∈ T (i)

where T (i) is the set of adjustment instances for variety i. Under the assumption that ∆p̃t is serially
uncorrelated, and some other general assumptions, Alvarez, Lippi, and Oskolkov (2020) show that the
following property then holds:

Kurt(∆p̃t) = Kurt(∆pit)
E[(∆p2

it)]
2

E[(∆p2
it)(∆p

2
is)]

for t 6= s

or equivalently

Kurt(∆p̃t) =
Kurt(∆pit)

1 + corr(∆p2
it,∆p

2
is)CV (∆p2

it)CV (∆p2
is)

for t 6= s

where CV(.) denotes the coefficient of variation and corr(.,.) the correlation coefficient.
We use these equations to compute a measure of kurtosis robust to unobserved heterogeneity. In

practice, we want to use information from several possible lags (the s’s as different from t), rather than
picking up a single particular lag s.

To compute the covariance terms in the expression above we as use an estimator of E = E[(∆p2
it)(∆p

2
is)]

the following expression:

E = (1/#Terms)
∑

t,s∈T (i),t6=s

(∆pit)
2(∆pis)

2 (33)

In practice, we consider the first K lags of squared price changes. So, the numerator of the formula
(33) above is computed as:

S = 2 ∗ [

T∑
t=2

(∆pt)
2(∆pt−1)2 +

T∑
t=3

(∆pt)
2(∆pt−2)2 + ...+

T∑
t=K+1

(∆pt)
2(∆pt−K)2] (34)

Denotig by NN the number of terms in equation ( 34), then #Terms = 2 ∗NN , where:

NN = (T − 1) + (T − 2) + ...+ (T − k) = T (T − 1)/2− (T −K − 1) ∗ (T −K)/2 (35)

So when K = T − 1 , #Terms = 2 ∗ T (T − 1)/2 = T (T − 1) Then we recover

E =
S

T (T − 1)
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F Measurement Error

This appendix assesses the impact of (one form of) measurement errors on the micro moments of price
adjustment and their ratio Kurt/Freq.

Assume measurement errors are of the following type: for a given store, measurement errors materialize
at some points by extra spurious price changes, and these spurious price changes are small. Such patterns
of error is plausible (as discussed in Alvarez, Le Bihan, and Lippi (2016) ), both for CPI data because
small coding error can stay undetected by the error checking procedures of the statistical institute, and
for scanner data as the price in typically computed as the ratio of value purchased to quantity sold (and
the numerator can vary reflecting e.g. coupons). These spurious price changes will increase both the
measured Kurtosis, as well as the measured Frequency of price changes - with the size of the bias being a
function of the fraction of spurious price changes. However, as is formally shown below, such measurement
errors will leave ratio Kurtosis/Frequency unchanged. As a result, not only theory indicates that the ratio
Kurtosis/Frequency is the relevant covariate, but it is also the case that this ratio should be more robust
to measurement errors than each of the moments taken separately.

Formally, let N∆p be the number of “true” price changes per period (i.e. the frequency of price
changes). Assume ∆p, the price changes, have mean zero, variance V ar(∆p) = σ2

∆p and Kurtosis

Kurt(∆p) = m4,∆p/σ
4
∆p, where m4,∆p is the fourth moment of variable ∆p . Let Ne denote the number of

spurious price changes per unit of time. Assume that spurious price changes, denoted e, have mean zero
and variance V ar(e) = σ2

e , and kurtosis Kurt(e) = m4,e/σ
4
e . Aume spurious and true price changes to be

statistically independent. Then the observed (measured) frequency of price changes will be Ñ = N∆p+Ne.
The distribution of the observed price changes, denoted ∆̃p’s , will have mean zero and its Kurtosis will
be

Kurt(∆̃p) =
θKurt(∆p)σ4

∆p + (1− θ)Kurt(e)σ4
e(

θσ2
∆p + (1− θ)σ2

e

)2

with θ ≡ N∆p

Ñ
the fraction of “true” price changes. We consider the case of arbitrarily small measurement

errors . From the above it results that limσ2
e→0Kurt(∆̃p) = Kurt(∆p)

θ . Then we have limσ2
e→0

Kurt(∆̃p)

Ñ
=

Kurt(∆p)
N∆p

. Thus, the ratio Kurtosis over Frequency is unaffected by these presence of small measurement
error.
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G OLS regressions - Additional results and robustness

Table B: Testing Model’s Predictions

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: PRODUCER PRICES

Constrained model
P-val β = −1/6 0.003 0.053 0.019 0.006 0.681 0.351
P-val α = −T 0.111 0.702 0.076 0.027 0.006 0.000
Ratio α/β -307.6 -360.9 -69.58 -72.82 -178.5 -216.0

Unconstrained model
P-val βf = −βk 0.566 0.457 0.648 0.643 0.819 0.857

P-val βf = − K̄
6F̄

0.130 0.325 0.033 0.020 0.577 0.460

P-val βk = K̄
6F̄

0.679 0.915 0.039 0.022 0.477 0.389

P-val γ = −T + K̄
6F̄

0.743 0.687 0.779 0.626 0.022 0.000

PANEL B: CONSUMER PRICES

Constrained model
P-val β = −1/6 0.000 0.000 0.433 0.529 0.000 0.003
P-val α = −T 0.000 0.009 0.796 0.495 0.003 0.000
Ratio α/β 685.5 11,160 -184.4 -205.0 -696.0 -759.4

Unconstrained model
P-val βf = −βk 0.877 0.492 0.001 0.000 0.049 0.039

P-val βf = − K̄
6F̄

0.281 0.860 0.001 0.000 0.032 0.006

P-val βk = K̄
6F̄

0.124 0.377 0.773 0.929 0.710 0.664

P-val γ = −T + K̄
6F̄

0.352 0.433 0.000 0.000 0.340 0.202

Note: we report p-values of Wald tests performed on the parameters of our baseline OLS regressions presented in

Table 2 and Table 2. These tests correspond to model’s predictions presented in equation (10) and equation (11).

We perform four different tests: (i) in the constrained version of the model we test whether β (parameter

associated with the ratio Kurt/Freq is equal to −δ/6 (where δ is the MP shock here normalised to 1%); (ii) we

test whether the constant of the constrained model (α) is equal to −T and in the unconstrained model, whether γ

is equal to −T + K̄
6F̄

and (iii) in the unconstrained model, we test whether the parameter associated with

frequency (βf ) is equal to minus the parameter associated with kurtosis (−βk); (iv) in the unconstrained version,

we also perform tests on the parameter associated with frequency and kurtosis, they are predicted to be equal to
K̄
6F̄

where K̄ and F̄ are sample averages of kurtosis and frequency. We also report the ratio of the estimated

coefficients in OLS regressions.
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Table C: Regression Results: Alternative Specifications - Log

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: Producer prices - Constrained model
Log(ratio) 3.948** 5.301*** 37.86*** 60.62*** 10.07*** 12.39***

(1.649) (1.723) (11.30) (17.62) (3.398) (4.541)

Constant -31.63*** -49.67*** -152.0*** -247.5*** -61.54*** -85.53***
(6.440) (6.681) (43.44) (67.54) (12.97) (17.35)

R2 0.103 0.175 0.255 0.282 0.259 0.223

PANEL B: Producer prices - Unconstrained model
Log(Freq) -3.748** -5.155*** -38.32*** -61.78*** -10.56*** -13.11***

(1.833) (1.873) (11.75) (18.24) (3.582) (4.845)

Log(Kurt) 4.834** 5.948** 35.84** 55.48** 7.895* 9.189*
(2.291) (2.414) (14.78) (22.53) (4.061) (5.274)

Constant -15.37*** -26.66*** 26.79 42.85 -10.47 -21.55**
(4.982) (4.836) (25.41) (37.37) (7.124) (9.852)

R2 0.104 0.176 0.255 0.282 0.262 0.226
Observations 118 118 118 118 118 118

PANEL C: Consumer prices - Constrained model
Log(Ratio) 1.354 3.509 24.83** 43.49** 8.643** 11.63**

(2.289) (2.877) (11.76) (18.74) (3.580) (4.539)

Constant -18.72* -41.94*** -112.5** -204.8** -65.36*** -95.81***
(10.50) (13.07) (52.51) (83.59) (15.72) (19.89)

R2 0.003 0.017 0.092 0.111 0.082 0.086

PANEL D: Consumer prices - Unconstrained model
Log(Freq) 1.460 -0.824 -27.27* -50.72** -8.005* -11.23*

(2.715) (3.442) (14.41) (22.87) (4.559) (5.792)

Log(Kurt) 11.07*** 12.77*** 16.43** 18.56 10.84*** 12.99***
(3.020) (3.338) (7.462) (11.99) (3.289) (4.426)

Constant -32.83*** -45.19*** 19.46 47.73 -30.17*** -45.12***
(5.901) (7.093) (25.53) (41.36) (10.52) (13.88)

R2 0.051 0.050 0.095 0.121 0.084 0.087
Observations 223 223 223 223 223 223

Note: this table reports results of OLS regressions (equation 10) where the endogenous variable is the product-

specific CIR CIR
Pj

T (expressed in %) and the RHS variables include the log of the product-specific ratio Kurt/freq

in the constrained model and the log of product specific frequency and the log of product-specific kurtosis. Robust

standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table D: Regression Results - Placebo Unconstrained Specification

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: PRODUCER PRICES
Freq/F̄ -2.865* -3.337** -24.17** -37.39** -5.488* -6.347

(1.454) (1.491) (10.35) (16.28) (3.258) (4.406)

Kurt/K̄ 3.026 4.066 21.29* 33.52* 5.823* 7.153
(3.048) (2.796) (12.09) (17.14) (3.177) (4.673)

Mean -0.254 -0.186 -4.946 -7.775 -0.855 -0.927
(0.792) (0.851) (4.713) (7.327) (1.285) (1.699)

Skewness 1.798 0.793 -5.560 -13.96 -4.708* -7.159*
(3.359) (2.989) (14.85) (20.32) (2.589) (3.855)

Standard dev. -0.916 -0.625 -5.324 -7.003 0.245 0.837
(1.297) (1.306) (8.740) (13.51) (2.460) (3.229)

Constant -13.33* -28.68*** 9.428 2.375 -27.87* -47.18**
(7.379) (7.539) (48.08) (75.03) (14.08) (18.59)

Observations 118 118 118 118 118 118
R2 0.118 0.164 0.246 0.264 0.228 0.195

PANEL B: CONSUMER PRICES
Freq/F̄ -6.170* -10.12*** -58.12*** -96.96*** -17.81*** -23.07***

(3.170) (3.640) (14.21) (21.71) (3.969) (4.877)

Kurt/K̄ -4.732* -2.640 10.03 25.00 7.629 11.55*
(2.733) (3.216) (10.82) (18.26) (4.688) (6.434)

Mean 0.0898 -0.366 -5.173** -9.461*** -1.505** -2.092**
(0.783) (0.822) (2.257) (3.511) (0.718) (0.956)

Skewness 5.111 7.162 15.02* 22.97 8.489** 10.98**
(4.335) (4.393) (8.898) (14.50) (3.586) (4.974)

Standard dev. -2.972*** -2.767** 0.0684 3.546 -0.00409 0.554
(1.078) (1.248) (3.924) (6.076) (1.211) (1.571)

Constant 21.50* 8.500 46.97 35.88 -15.71 -35.47*
(11.82) (13.60) (45.35) (70.99) (14.13) (18.48)

Observations 223 223 223 223 223 223
R2 0.108 0.165 0.509 0.572 0.383 0.380

Note: this table reports results of OLS regressions (equation 11) where the endogenous variable is the product-

specific CIR CIR
Pj

T (expressed in %) and the RHS variables include the ratio of the product-level frequency over its

average Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄, but also three other moments

of the product-specific price change distribution: the average price change Mean, the skewness of price changes

Skewness, and the standard deviation of price changes StandardDev.. Robust standard errors are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table E: Regression Results: Outliers - Constrained - Producer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: CIR
Kurt/Freq 0.0591** 0.0841*** 0.505*** 0.696*** 0.139*** 0.189***

(0.0271) (0.0304) (0.160) (0.193) (0.0362) (0.0489)

Constant -20.08*** -34.32*** -36.03*** -54.65*** -31.11*** -49.30***
(1.708) (1.857) (9.769) (11.87) (2.162) (2.925)

R2 0.059 0.095 0.125 0.135 0.143 0.145

PANEL B: Ratio
Kurt/Freq 0.0762* 0.108*** 0.673*** 1.086*** 0.181*** 0.226***

(0.0392) (0.0352) (0.173) (0.243) (0.0444) (0.0668)

Constant -20.39*** -34.85*** -41.71*** -71.31*** -32.18*** -49.54***
(2.388) (2.146) (10.61) (14.78) (2.580) (3.861)

R2 0.039 0.086 0.121 0.149 0.146 0.116

PANEL C: Kurtosis
Kurt/Freq 0.0932** 0.134*** 0.918*** 1.489*** 0.258*** 0.324***

(0.0402) (0.0417) (0.258) (0.397) (0.0713) (0.0941)

Constant -21.62*** -36.60*** -57.02*** -96.31*** -36.96*** -55.57***
(2.434) (2.463) (15.04) (22.88) (4.060) (5.389)

R2 0.057 0.111 0.149 0.169 0.171 0.154

PANEL D: Frequency
Kurt/Freq 0.0653* 0.0961** 0.723*** 1.182*** 0.200*** 0.252***

(0.0348) (0.0379) (0.241) (0.374) (0.0668) (0.0871)

Constant -20.55*** -35.12*** -49.50*** -84.36*** -34.52*** -52.51***
(2.241) (2.303) (14.25) (21.78) (3.844) (5.068)

R2 0.036 0.075 0.119 0.137 0.132 0.120
Observations 113 113 113 113 113 113

Note: this table reports results of OLS regressions (equation 10) for PPI products relating the product-specific

CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq. For each of the 4 regressions, we remove products with

”extreme” values of CIR (Panel A); ratio Kurt/Freq (Panel B), kurtosis (Panel C), frequency of price changes

(Panel D). ”Extreme values” are defined as products below the 2.5th percentile or above the 97.5th percentile of

the distribution of each statistic. Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, *

p<0.1
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Table F: Regression Results: Outliers - Constrained - Consumer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months

PANEL A: CIR
Kurt/Freq -0.0304*** -0.0302** -0.00224 0.0469 0.0260* 0.0384*

(0.0107) (0.0117) (0.0206) (0.0332) (0.0153) (0.0220)

Constant -9.375*** -22.80*** -2.007 -17.46*** -29.30*** -48.51***
(1.637) (1.616) (2.683) (4.236) (1.625) (2.361)

R2 0.033 0.029 0.000 0.009 0.015 0.015

PANEL B: Ratio
Kurt/Freq -0.0411** -0.0315 0.0158 0.0842 0.0164 0.0320

(0.0177) (0.0205) (0.0357) (0.0548) (0.0237) (0.0318)

Constant -8.503*** -23.39*** -4.693 -22.09*** -29.42*** -48.55***
(2.706) (2.984) (4.914) (7.321) (2.398) (3.232)

R2 0.021 0.011 0.001 0.011 0.003 0.006
PANEL C: Kurtosis
Kurt/Freq -0.0170 -0.00270 0.122* 0.245** 0.0429 0.0630*

(0.0187) (0.0226) (0.0738) (0.118) (0.0276) (0.0359)

Constant -11.68*** -27.53*** -22.73** -50.45*** -34.42*** -54.70***
(2.988) (3.505) (11.44) (18.14) (3.681) (4.734)

R2 0.003 0.000 0.014 0.022 0.013 0.016
PANEL D: Frequency
Kurt/Freq -0.0326** -0.0230 0.00516 0.0577 0.0270 0.0450*

(0.0153) (0.0172) (0.0300) (0.0443) (0.0172) (0.0230)

Constant -8.829*** -23.48*** -2.275 -17.34*** -29.32*** -48.33***
(2.553) (2.774) (4.547) (6.499) (2.046) (2.747)

R2 0.016 0.007 0.000 0.007 0.012 0.017
Observations 213 213 213 213 213 213

Note: this table reports results of OLS regressions (equation 10) for CPI products relating the product-specific

CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq. For each of the 4 regressions, we remove products with

”extreme” values of CIR (Panel A), ratio Kurt/Freq (Panel B), kurtosis (Panel C), frequency of price changes

(Panel D). ”Extreme values” are defined as products below the 2.5th percentile or above the 97.5th percentile of

the distribution of each statistic. Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, *

p<0.1
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Table G: Regression Results: Outliers - Unconstrained - Producer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: CIR
Freq/F̄ -2.024* -2.662** -16.96*** -19.00*** -3.727*** -5.053***

(1.115) (1.189) (6.208) (5.712) (1.202) (1.614)

Kurto/K̄ 2.310* 2.921* 17.05** 20.76** 3.941* 5.685**
(1.392) (1.495) (7.088) (8.278) (2.051) (2.817)

Constant -17.82*** -30.96*** -14.39* -26.79** -25.51*** -42.00***
(1.387) (1.575) (7.629) (10.66) (2.633) (3.578)

R2 0.109 0.149 0.220 0.146 0.127 0.131
PANEL B: Ratio
Freq/F̄ -1.984 -2.240* -14.86*** -22.60*** -2.874 -3.162

(1.547) (1.164) (5.390) (6.645) (1.772) (2.990)

Kurto/K̄ 4.770* 5.526** 26.71** 39.54*** 4.710* 4.962
(2.431) (2.116) (10.80) (14.95) (2.702) (4.070)

Constant -20.04*** -33.65*** -25.96** -43.67** -26.57*** -42.02***
(2.445) (2.274) (12.70) (18.13) (2.887) (3.999)

R2 0.062 0.088 0.118 0.127 0.071 0.043
PANEL C: Kurtosis
Freq/F̄ -2.520** -3.167** -23.76*** -37.55*** -5.994** -7.216*

(1.265) (1.297) (8.788) (13.82) (2.771) (3.766)

Kurto/K̄ 6.732** 8.189*** 47.35*** 72.77*** 11.03** 12.85**
(2.787) (2.830) (17.03) (25.81) (4.551) (5.979)

Constant -21.71*** -35.78*** -40.62** -66.79*** -30.83*** -47.22***
(2.906) (2.796) (16.81) (24.73) (3.969) (5.258)

R2 0.125 0.184 0.258 0.275 0.231 0.188
PANEL D: Frequency
Freq/F̄ -3.023* -3.710** -29.98*** -47.33*** -7.298** -8.713*

(1.626) (1.636) (10.93) (17.24) (3.572) (4.893)

Kurto/K̄ 3.267* 4.218** 24.65** 38.62** 5.751** 6.870*
(1.813) (1.851) (10.47) (15.51) (2.675) (3.469)

Constant -18.13*** -31.67*** -14.49 -27.03 -24.72*** -40.24***
(2.319) (2.152) (12.60) (18.17) (3.027) (4.121)

R2 0.116 0.171 0.285 0.307 0.245 0.198
Observations 113 113 113 113 113 113

Note: This table reports results of OLS regressions (equation 11) relating the product-specific CIR CIR
Pj

T (expressed

in %) to the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis

over its average Kurt/K̄. For each of the 4 regressions, we remove products with ”extreme” values of CIR (Panel

A); ratio Kurt/Freq (Panel B), kurtosis (Panel C), frequency of price changes (Panel D). ”Extreme values” are

defined as products below the 2.5th percentile or above the 97.5th percentile of the distribution of each statistic.

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table H: Regression Results: Outliers - Unconstrained - Consumer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: CIR
Freq/F̄ 4.340** 4.832** -3.195 -13.78*** -5.913** -8.578**

(2.090) (2.450) (3.550) (4.902) (2.623) (3.670)

Kurto/K̄ 3.609* 4.757** 8.541*** 12.46*** 6.138*** 8.495***
(1.869) (2.031) (2.929) (3.718) (1.537) (2.170)

Constant -19.75*** -34.72*** -8.113* -13.60* -27.70*** -45.70***
(2.281) (2.855) (4.711) (7.168) (3.460) (5.075)

R2 0.065 0.082 0.049 0.078 0.106 0.097
PANEL B: Ratio
Freq/F̄ 6.264** 3.664 -10.86 -28.78*** -6.202* -10.09**

(2.990) (3.520) (6.827) (10.85) (3.390) (4.530)

Kurto/K̄ 7.988*** 9.923*** 14.40*** 18.75*** 10.62*** 13.32***
(2.858) (3.078) (4.646) (6.909) (2.610) (3.483)

Constant -25.47*** -39.09*** -7.688 -7.381 -32.82*** -49.76***
(2.925) (3.249) (6.487) (11.06) (4.749) (6.495)

R2 0.067 0.052 0.063 0.114 0.081 0.086
PANEL C: Kurtosis
Freq/F̄ -5.606** -9.607*** -59.80*** -100.4*** -17.86*** -23.21***

(2.758) (3.162) (12.61) (19.37) (3.666) (4.536)

Kurto/K̄ 12.83*** 15.14*** 22.07** 27.10* 13.23*** 16.00***
(3.347) (3.757) (8.766) (14.30) (3.855) (5.120)

Constant -19.94*** -32.85*** 25.23* 43.05** -25.88*** -41.83***
(4.172) (4.782) (13.36) (21.25) (5.801) (7.637)

R2 0.108 0.181 0.554 0.607 0.388 0.376
PANEL D: Frequency
Freq/F̄ 6.723** 5.051 -1.593 -12.30 -4.369* -7.549**

(2.839) (3.094) (6.755) (10.12) (2.587) (3.423)

Kurto/K̄ 4.587* 5.874** 8.233** 10.98** 6.992*** 8.912***
(2.507) (2.731) (3.596) (4.734) (1.937) (2.428)

Constant -22.50*** -36.09*** -8.734 -12.18 -30.05*** -46.52***
(2.988) (3.240) (5.719) (9.049) (3.737) (5.023)

R2 0.055 0.042 0.019 0.035 0.067 0.073
Observations 213 213 213 213 213 213

Note: This table reports results of OLS regressions (equation 11) relating product-specific CIR CIR
Pj

T (expressed

in %) to the ratio of the product-level frequency over its average Freq/F̄ and the ratio of the product-level kurtosis

over its average Kurt/K̄. For each of the 4 regressions, we remove products with ”extreme” values of CIR (Panel

A); ratio Kurt/Freq (Panel B), kurtosis (Panel C), frequency of price changes (Panel D). ”Extreme values” are

defined as products below the 2.5th percentile or above the 97.5th percentile of the distribution of each statistic.

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table I: Regression Results: Kurtosis Measurement - Heterogeneity

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: Producer Prices - Constrained model
Kurt/Freq 0.0837** 0.115*** 0.731*** 1.170*** 0.190*** 0.234***

(0.0345) (0.0384) (0.236) (0.367) (0.0662) (0.0862)

Constant -20.49*** -34.79*** -42.68*** -72.47*** -32.33*** -49.60***
(1.807) (1.917) (11.98) (18.44) (3.278) (4.293)

R2 0.045 0.080 0.093 0.103 0.090 0.078
PANEL B: Producer Prices - Unconstrained model
Freq/F̄ -2.408* -3.066** -23.46** -37.23** -6.048** -7.328*

(1.280) (1.327) (9.125) (14.34) (2.822) (3.803)

Kurt/K̄ 4.458** 4.376** 12.96*** 15.20** -0.641 -2.262
(2.027) (1.746) (4.757) (6.591) (2.236) (3.571)

Constant -19.71*** -32.22*** -7.442 -10.84 -19.21*** -32.08***
(2.272) (1.985) (6.972) (9.815) (2.556) (3.995)

R2 0.146 0.185 0.220 0.231 0.192 0.162
PANEL C: Consumer Prices - Constrained model
Kurt/Freq -0.0152 -0.00274 0.105* 0.211** 0.0446* 0.0646**

(0.0148) (0.0175) (0.0622) (0.104) (0.0228) (0.0303)

Constant -12.21*** -27.40*** -17.50** -40.13*** -32.81*** -52.32***
(2.264) (2.634) (8.703) (13.88) (2.792) (3.616)

R2 0.003 0.000 0.010 0.015 0.013 0.016
PANEL D: Consumer Prices - Unconstrained model
Freq/F̄ -4.959* -8.601** -54.24*** -91.25*** -16.44*** -21.39***

(2.820) (3.344) (13.80) (21.35) (3.911) (4.832)

Kurt/K̄ 3.637* 4.424** 5.274 6.242 5.771*** 7.303***
(2.084) (2.225) (4.155) (6.457) (1.827) (2.337)

Constant -11.85*** -23.40*** 38.14*** 58.29*** -19.31*** -34.12***
(3.538) (4.079) (13.40) (20.75) (4.801) (6.128)

R2 0.061 0.126 0.476 0.528 0.342 0.335
Observations 223 223 223 223 223 223

Note: This table reports results of OLS results of the constrained model (equation 10) relating product-specific

CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation 11)

relating product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average

Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄. The measure of kurtosis takes into

account for possible product heterogeneity following the methodology presented in Appendix E and using S = 5.

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table J: Regression Results: Kurtosis Measurement - Producer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: Outlier threshold - small price changes - Constrained model
Kurt/Freq 0.0554* 0.0806** 0.569*** 0.928*** 0.158*** 0.199***

(0.0283) (0.0323) (0.196) (0.306) (0.0561) (0.0728)

Constant -19.78*** -33.99*** -39.71*** -68.34*** -31.95*** -49.28***
(1.801) (1.878) (11.36) (17.37) (3.075) (4.048)

R2 0.031 0.062 0.088 0.101 0.098 0.088
PANEL B: Outlier threshold - small price changes - Unconstrained model
Freq/F̄ -2.417* -3.037** -22.91** -36.22** -5.819** -7.011*

(1.298) (1.327) (8.968) (14.03) (2.767) (3.743)

Kurt/K̄ 2.490 3.403* 21.70** 34.71** 5.349* 6.565*
(1.760) (1.954) (10.61) (16.01) (2.852) (3.670)

Constant -17.73*** -31.28*** -16.74 -31.37 -25.43*** -41.23***
(2.321) (2.331) (13.35) (19.66) (3.310) (4.402)

R2 0.096 0.147 0.227 0.245 0.209 0.173
PANEL C: Outlier threshold - large price changes - Constrained model
Kurt/Freq 0.0273 0.0415* 0.311** 0.512** 0.0881* 0.112*

(0.0193) (0.0245) (0.147) (0.236) (0.0453) (0.0587)

Constant -19.49*** -33.69*** -38.80*** -67.19*** -31.81*** -49.18***
(1.906) (2.116) (12.77) (19.86) (3.652) (4.786)

R2 0.023 0.050 0.081 0.094 0.093 0.085
PANEL D: Outlier threshold - large price changes - Unconstrained model
Freq/F̄ -2.521* -3.181** -23.84*** -37.72*** -6.053** -7.298*

(1.306) (1.345) (9.056) (14.19) (2.806) (3.794)

Kurt/K̄ 1.062 1.653 14.60 24.18* 4.095 5.210
(1.267) (1.513) (8.948) (14.06) (2.812) (3.647)

Constant -16.20*** -29.38*** -8.704 -19.34 -23.94*** -39.59***
(1.623) (1.675) (10.04) (15.14) (2.774) (3.682)

R2 0.089 0.137 0.223 0.243 0.210 0.176
Observations 118 118 118 118 118 118

Note: This table reports results of OLS results of the constrained model (equation 10) for PPI products relating

product-specific CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model

(equation 11) relating product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over

its average Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄. In Panels A and B, we

have modified the thresholds defining very small price changes for the calculation of kurtosis: we have removed all

price changes below 0.5% in absolute values (instead 0.1% in our baseline). In Panels C and D, we have modified

thresholds defining very large price changes for the calculation of kurtosis (25% for instead of 15% in the baseline).

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table K: Regression Results: Kurtosis Measurement - Consumer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: Outlier threshold - small price changes - Constrained model
Kurt/Freq -0.0144 0.00129 0.126* 0.250** 0.0542** 0.0781**

(0.0166) (0.0199) (0.0657) (0.105) (0.0240) (0.0312)

Constant -11.86*** -27.59*** -21.40** -47.87*** -34.59*** -54.89***
(2.758) (3.226) (10.60) (16.79) (3.369) (4.337)

R2 0.003 0.000 0.016 0.025 0.022 0.027
PANEL B: Outlier threshold - small price changes - Unconstrained model
Freq/F̄ -4.956* -8.610** -54.91*** -92.39*** -16.46*** -21.42***

(2.845) (3.372) (13.80) (21.35) (3.953) (4.886)

Kurt/K̄ 4.087* 5.031* 2.605 1.546 5.693*** 7.245***
(2.381) (2.557) (3.971) (6.585) (1.950) (2.490)

Constant -12.22*** -23.90*** 41.75*** 64.52*** -19.16*** -34.00***
(3.881) (4.449) (13.79) (21.43) (5.045) (6.433)

R2 0.065 0.132 0.482 0.534 0.345 0.337
PANEL C: Outlier threshold - large price changes - Constrained model
Kurt/Freq -0.00911 0.00346 0.0994* 0.195** 0.0441** 0.0632***

(0.0128) (0.0154) (0.0512) (0.0817) (0.0183) (0.0238)

Constant -12.17*** -27.96*** -21.76** -48.22*** -34.83*** -55.16***
(2.744) (3.206) (10.55) (16.74) (3.340) (4.299)

R2 0.002 0.000 0.017 0.025 0.024 0.029
PANEL D: Outlier threshold - large price changes - Unconstrained model
Freq/F̄ -4.922* -8.546** -54.12*** -91.05*** -16.39*** -21.34***

(2.783) (3.301) (13.73) (21.26) (3.867) (4.780)

Kurt/K̄ 4.246* 5.404* 7.798* 10.40* 6.289*** 7.988***
(2.540) (2.854) (4.218) (5.795) (2.198) (2.696)

Constant -12.50*** -24.44*** 35.49*** 53.93*** -19.86*** -34.85***
(3.682) (4.268) (12.60) (19.33) (4.708) (5.972)

R2 0.069 0.137 0.479 0.530 0.351 0.343
Observations 223 223 223 223 223 223

Note: This table reports results of OLS results of the constrained model (equation 10) for CPI products relating

product-specific CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model

(equation 11) relating product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over

its average Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄. In Panels A and B, we

have modified the thresholds defining very small price changes for the calculation of kurtosis: we have removed all

price changes below 0.5% in absolute values (instead 0.1% in our baseline). In Panels C and D, we have modified

thresholds defining very large price changes for the calculation of kurtosis (35% for instead of 25% in the baseline).

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table L: Regression Results: Role of sales - Consumer Prices

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: Excluding food, clothing/footwear, furnishings - Constrained model
Kurt/Freq 0.0467** 0.0692** 0.247** 0.400** 0.0993*** 0.129***

(0.0229) (0.0290) (0.107) (0.172) (0.0342) (0.0437)

Constant -23.04*** -39.33*** -44.61** -75.84** -38.04*** -57.39***
(4.330) (5.454) (19.70) (31.64) (6.312) (8.042)

R2 0.034 0.048 0.053 0.054 0.078 0.079
PANEL B: Excluding food, clothing/footwear, furnishings - Unconstrained model
Freq/F̄ -8.726*** -12.88*** -64.71*** -105.6*** -19.92*** -25.41***

(1.218) (1.514) (9.067) (14.89) (2.792) (3.633)

Kurt/K̄ 5.318** 6.718** 11.18** 15.32* 6.500*** 8.122***
(2.683) (3.062) (5.568) (8.428) (2.173) (2.724)

Constant -14.39*** -25.38*** 36.71*** 59.41*** -13.44*** -25.64***
(3.494) (3.996) (9.837) (15.72) (3.537) (4.559)

R2 0.260 0.361 0.725 0.745 0.644 0.636
Observations 134 134 134 134 134 134
PANEL C: % of sales prices below the median - Constrained model
Kurt/Freq -0.000929 0.0316 0.245** 0.461** 0.133*** 0.185***

(0.0276) (0.0342) (0.122) (0.193) (0.0374) (0.0473)

Constant -12.32** -30.73*** -45.06* -91.14** -45.07*** -69.35***
(5.440) (6.705) (23.19) (36.55) (7.003) (8.771)

R2 0.000 0.009 0.046 0.064 0.130 0.153
PANEL D: % of sales prices below the median - Unconstrained model
Freq/F̄ -8.872*** -13.71*** -72.13*** -118.9*** -23.27*** -29.96***

(2.363) (2.662) (12.97) (20.28) (3.285) (4.144)

Kurt/K̄ 0.410 2.409 3.005 7.709 7.194** 10.26***
(2.749) (3.355) (7.785) (11.84) (2.802) (3.579)

Constant -3.958 -15.85*** 51.75*** 72.27*** -13.92*** -28.66***
(4.625) (5.405) (14.10) (21.18) (4.492) (5.665)

R2 0.166 0.273 0.645 0.693 0.676 0.690
Observations 111 111 111 111 111 111

Note: This table reports results of OLS results of the constrained model (equation 10) for CPI products relating

product-specific CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model

(equation 11) relating product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over

its average Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄. In Panels A and B, we have

removed goods of three broad sectors where sales concentrate (COICOP01.1 Food, COICOP03 Clothing/Footwear,

and COICOP05 Furnishing goods). In Panels C and D, we have removed products for which the share of sales and

promotions represent more than 11% of all price changes (this threshold corresponds to the median of this ratio

over all CPI products). Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table M: Regression Results: Alternative Specifications - Sector Fixed Effects

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: Producer prices - Constrained model
Kurt/Freq 0.0366 0.0565* 0.393** 0.647*** 0.119** 0.153**

(0.0301) (0.0321) (0.157) (0.239) (0.0483) (0.0662)

Constant -14.93*** -27.83*** -23.02 -44.51** -27.53*** -44.18***
(2.701) (3.153) (14.04) (20.87) (3.258) (3.918)

R2 0.371 0.440 0.521 0.549 0.527 0.476
PANEL B: Producer prices- Unconstrained model
Freq/F̄ -1.705 -1.951 -11.87 -17.96 -2.621 -2.957

(1.310) (1.274) (7.540) (11.49) (2.336) (3.375)

Kurt/K̄ 2.562 2.722 21.48** 32.66** 3.630 3.823
(1.964) (1.984) (10.41) (15.38) (2.902) (3.963)

Constant -14.62*** -26.72*** -18.73 -36.08* -24.30*** -39.57***
(2.986) (3.177) (13.94) (19.64) (2.908) (3.588)

R2 0.396 0.462 0.544 0.567 0.525 0.467
Observations 118 118 118 118 118 118
PANEL C: Consumer prices - Constrained model
Kurt/Freq 0.0246 0.0422* 0.135* 0.228* 0.0821*** 0.110***

(0.0187) (0.0224) (0.0786) (0.127) (0.0259) (0.0337)

Constant 1.697 -14.68*** -0.883 -28.71*** -34.83*** -58.09***
(2.922) (2.760) (5.940) (9.072) (2.039) (3.063)

R2 0.530 0.544 0.334 0.338 0.486 0.491
PANEL D: Consumer prices - Unconstrained model
Freq/F̄ -11.03*** -14.88*** -69.03*** -110.0*** -19.96*** -24.87***

(1.623) (1.883) (9.599) (15.41) (2.697) (3.495)

Kurt/K̄ 3.499 4.357* -4.398 -9.689 4.020** 5.231*
(2.458) (2.456) (4.934) (8.415) (1.988) (2.688)

Constant 16.46*** 5.828 114.4*** 157.7*** -4.886 -20.75***
(4.419) (4.571) (15.93) (25.50) (4.972) (6.628)

R2 0.678 0.743 0.765 0.766 0.747 0.723
Observations 223 223 223 223 223 223

Note: This table reports results of OLS results of the constrained model (equation 10) relating product-specific CIR

CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation 11) relating

product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄

and the ratio of the product-level kurtosis over its average Kurt/K̄. Regressions include sectoral fixed effects at

the 2-digit level for both CPI and PPI products (38 sectors for CPI and 24 sectors for PPI). Robust standard errors

are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table N: Regression Results: 2-year German Bond - High-Frequency IV

Identification High-Frequency IV High-Frequency IV
Long-run Restriction Yes No

24 months 36 months 24 months 36 months
PANEL A: Producer Prices - Constrained model
Kurt/Freq 0.186*** 0.244*** 0.281*** 0.446***

(0.0669) (0.0775) (0.0923) (0.149)

Constant -20.34*** -34.78*** -24.42*** -43.44***
(4.393) (4.993) (5.708) (8.921)

R2 0.069 0.091 0.092 0.095
PANEL B: Producer Prices - Unconstrained model
Freq/F̄ -5.148* -6.623** -8.765** -14.20**

(2.627) (2.973) (3.545) (5.673)

Kurt/K̄ 8.553** 10.98** 7.425 8.914
(3.931) (4.451) (4.794) (7.257)

Constant -15.64*** -28.50*** -10.82* -18.71**
(5.071) (5.651) (6.015) (8.594)

R2 0.104 0.131 0.144 0.149
Observations 118 118 118 118
PANEL C: Consumer Prices - Constrained model
Kurt/Freq -0.0265 -0.00828 0.0427* 0.135***

(0.0171) (0.0158) (0.0224) (0.0447)

Constant -3.369 -16.95*** -9.561*** -29.80***
(2.802) (2.516) (3.390) (6.309)

R2 0.010 0.001 0.016 0.041
PANEL D: Consumer Prices - Unconstrained model
Freq/F̄ -3.898 -5.798* -15.56*** -29.74***

(2.999) (3.015) (2.965) (4.492)

Kurt/K̄ -1.131 1.167 -6.750*** -10.33**
(1.960) (1.774) (2.408) (4.825)

Constant -0.732 -13.06*** 16.61*** 22.42***
(3.180) (3.008) (4.051) (7.358)

R2 0.032 0.091 0.324 0.304
Observations 223 223 223 223

Note: This table reports results of OLS results of the constrained model (equation 10) relating product-specific

CIR CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation 11)

relating product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average

Freq/F̄ and the ratio of the product-level kurtosis over its average Kurt/K̄. CIR are here calculated using the

2-year German bond rate as a policy rate and the model is identified using a high frequency instrument method.

Robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table O: Regression Results: No drift - Sectoral Average Inflation< 5%

Identification Cholesky Cholesky High-Frequency IV
Long-run Restriction Yes No Yes

24 months 36 months 24 months 36 months 24 months 36 months
PANEL A: Producer Prices - Constrained model
Kurt/Freq 0.0597* 0.0917** 0.650*** 1.071*** 0.190*** 0.242***

(0.0318) (0.0350) (0.217) (0.338) (0.0616) (0.0805)

Constant -19.95*** -34.68*** -44.21*** -76.73*** -34.05*** -52.25***
(2.037) (2.150) (13.04) (20.12) (3.671) (4.851)

R2 0.042 0.085 0.127 0.142 0.129 0.118
PANEL B: Producer Prices - Unconstrained model
Freq/F̄ -2.615** -3.243** -24.50*** -38.62*** -6.092** -7.294*

(1.290) (1.324) (8.995) (14.11) (2.798) (3.787)

Kurt/K̄ 2.817* 4.008** 23.74** 38.25** 6.322** 7.900*
(1.604) (1.808) (10.17) (15.81) (3.095) (4.056)

Constant -17.54*** -31.44*** -15.03 -29.54** -26.00*** -42.29***
(1.637) (1.790) (9.562) (14.74) (2.985) (4.029)

R2 0.133 0.184 0.295 0.303 0.220 0.179
Observations 116 116 116 116 116 116
PANEL C: Consumer Prices - Constrained model
Kurt/Freq -0.0261 -0.00991 0.113 0.243** 0.0542** 0.0805**

(0.0171) (0.0207) (0.0689) (0.110) (0.0249) (0.0322)

Constant -9.926*** -25.94*** -21.08* -49.77*** -35.30*** -56.26***
(2.909) (3.448) (11.46) (18.13) (3.613) (4.624)

R2 0.009 0.001 0.014 0.025 0.023 0.030
PANEL D: Consumer Prices - Unconstrained model
Freq/F̄ -4.783 -8.439** -54.07*** -91.18*** -16.45*** -21.44***

(2.896) (3.398) (13.80) (21.26) (3.852) (4.740)

Kurt/K̄ 3.505 5.047** 6.555 9.697 7.892*** 10.43***
(2.169) (2.524) (4.698) (7.353) (2.418) (3.105)

Constant -11.07*** -23.47*** 36.95*** 54.15*** -21.73*** -37.79***
(3.655) (4.291) (13.10) (20.17) (4.977) (6.361)

R2 0.059 0.128 0.478 0.533 0.360 0.357
Observations 214 214 214 214 214 214

Note: This table reports results of OLS results of the constrained model (equation 10) relating product-specific CIR

CIR
Pj

T (expressed in %) to the ratio Kurt/freq and OLS results of the unconstrained model (equation 11) relating

product-specific CIR CIR
Pj

T (expressed in %) to the ratio of the product-level frequency over its average Freq/F̄

and the ratio of the product-level kurtosis over its average Kurt/K̄. We remove products for which the average

annual inflation is above 5% (in absolute values) over the sample period. Robust standard errors are reported in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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