The Effects of Trade Competition on Reallocations, Productivity, and Welfare

Marc J. Melitz Harvard University

Trade and Reallocations

- Trade induces many different reallocations across firms and products:
 - Selection effects:
 - Which products are sold where (across domestic and export markets)
 - Which firms survive; which firms export (and where)
 - But also competition effects:
 - Conditional on selection (same products sold in a given market) trade affects the relative market shares of those products
- These reallocations generate (endogenous) productivity changes that are independent of "technology"

1

Outline

- Measuring the reallocation effects of trade (and what they imply about the structure of trade models)
- Output
 How big is the effect of reallocations on productivity?
- Opposition of the productivity changes generated by reallocations contribute to aggregate gains from trade?

Measuring Reallocations Within Multi-Product Firms

Measuring the Reallocation Effects of Trade

- It is very hard to measure the reallocation effects across firms at the country/industry level:
 - Shocks that affect trade (institutions, technology, ...) are also likely to affect the distribution of market shares across firms
- Recent theoretical models of multi-product firms highlight how trade induces a similar pattern of reallocations within firms as it does across firms

Measuring the Reallocation Effects of Trade

- It is very hard to measure the reallocation effects across firms at the country/industry level:
 - Shocks that affect trade (institutions, technology, ...) are also likely to affect the distribution of market shares across firms
- Recent theoretical models of multi-product firms highlight how trade induces a similar pattern of reallocations within firms as it does across firms
- When measuring reallocations within multi-product firms, can:
 - Isolate trade shocks that are exogenous to individual firms controlling for country/industry effects
 - Control for firm-level technology changes
 - Look at same set of (narrowly defined products) sold by same firm across destinations or time

Measuring the Reallocation Effects of Trade

- It is very hard to measure the reallocation effects across firms at the country/industry level:
 - Shocks that affect trade (institutions, technology, ...) are also likely to affect the distribution of market shares across firms
- Recent theoretical models of multi-product firms highlight how trade induces a similar pattern of reallocations within firms as it does across firms
- When measuring reallocations within multi-product firms, can:
 - Isolate trade shocks that are exogenous to individual firms controlling for country/industry effects
 - Control for firm-level technology changes
 - Look at same set of (narrowly defined products) sold by same firm across destinations or time
- Aside: Multi-product firms dominate world trade

Similar Reallocations Across Firms and Within Multi-Product Firms

Firms

- Stable performance ranking for firms based on performance in any given market (including domestic market) or worldwide sales
- Better performing firms export to more destinations
- Worse performing firms are most likely to exit (overall, or from any given export market)

Products within Firms

- Stable performance ranking across destinations (and for worldwide sales)
- Better performing products are sold in more destinations
- Worse performing products are most likely to be dropped from any given market

Prices, Markups, and Pass-Through

Firms

- Larger, better performing firms set higher markups
- Incomplete pass-through of cost shocks to prices
 - 'More' incomplete for larger, better performing firms (Berman et al, 2012)

Products within Firms

- Similar pattern for multi-product firms:
 - India (Goldberg et al, 2012)
 - Brazil (Chatterjee et al, AEJ EP 2013)
 - China (Li et al, JIE 2015)

Reallocations Across Destinations

Mean Global Sales Ratio and Destination Market Size

Mean Global Sales Ratio and Foreign Supply Potential

Reallocations Over Time

- Changes in the destination markets over time also induce similar pattern of reallocations
- For all firms exporting to destination d, can measure change in
 - $\log GDP_{d,t}$
 - Total imports into d (in ISIC I) excluding French exports: $\log M_{d,t}^I$
 - Both capture demand shocks for French exporters to d (trade-induced for the case of $\log M_{d,t}^I$)
- ... but we can also construct a firm *i*-specific measure of the trade-induced demand shock:

$$\operatorname{shock}_{i,d,t}^I \equiv \overline{\log M_{d,t}^s} \quad \forall \text{ products } s \in I \text{ exported by firm } i \text{ to } d \text{ in } t_0$$

- \longrightarrow Shocks in first differences: $\tilde{\Delta}GDP_{d,t}$, $\tilde{\Delta}M_{d,t}^{I}$, $\overline{\tilde{\Delta}M_{d,t}^{s}}$
- All 3 trade shocks strongly predict response of firm *i*'s exports in destination *d* along both extensive and extensive margins

Impact of Trade Shocks on Reallocations Over Time

Destination-level over time:

- Trade shock strongly predicts increased skewness of firm's product mix
- Theoretical connection with preferences satisfying previous evidence on markups and pass-through

Impact of Trade Shocks on Reallocations Over Time

Destination-level over time:

- Trade shock strongly predicts increased skewness of firm's product mix
- Theoretical connection with preferences satisfying previous evidence on markups and pass-through

Aggregating up to firm-level:

- Use (lagged) firm-destination export shares
- Trade shock strongly predicts increased skewness of firm's global product mix (global exports and total production)

Effects of Trade-Induced Reallocations on Productivity

New Data and Productivity

- Merge trade data with production data (comprehensive annual census)
 - Adds firm level variables (by year) for input and output use
- Measure productivity as deflated value-added per worker

Aside on TFP^Q versus TFP^R :

• Firm/product level:

$$TFP_i^Q = \frac{Y_i/P_i}{L_i}$$
 $TFP_i^R = \frac{Y_i/\tilde{P}_S}{L_i}$

Sector/aggregate level:

$$TFP_S^Q = \frac{Y_S/\tilde{P}_S}{L_S} = \sum_{i \in S} \frac{L_i}{L_S} TFP_i^R$$

Impact of Demand Shocks on Firm Productivity: Largest French Exporters

CounterFactual Bottom Line: Aggregate Effects of Trade Shocks on Productivity

Industry	prod.	trade shock	% high exp.intens.	% mfg. emp.
Wearing Apparel	3.38	5.21	27.36	2.26
Wood	3.37	6.34	20.36	1.7
Tobacco	3.22	43.6	.48	.16
Printing and publishing	2.81	8.48	5.36	3.31
Radio, television and communication	1.8	4.94	59.77	4.31
Leather and footwear	1.79	3.59	26.86	1.21
Textiles	1.69	1.99	33.04	3.29
Motor vehicles, trailers and semi-trailers	1.62	9.8	52.39	7.82
Machinery	1.32	5.54	45.4	9.12
Manufacturing nec	1.19	5.94	22.72	3.56
Pulp and paper	1.18	3.67	30.62	2.82
Chemicals	1.15	6.58	40.55	9.63
Fabricated metal	.94	7.04	17.41	8.81
Medical, precision and optical instruments	.85	5.84	46.82	3.53
Rubber and plastics	.8	5.75	36.97	7.18
Electrical machinery	.73	5.83	53.12	5.17
Basic metals	.7	6.27	58.91	4.06
Food and beverages	.66	6.2	14.12	11.88
Other transport equipment	.65	7.25	69.14	4.3
Office machinery	.64	3.7	42.55	1.09
Other Non-Metallic Mineral	.46	3.89	35.52	3.86
Coke, ref. petr. and nuclear fuel	18	5.12	25.54	.93
Total mfg	1.17	6.2	36.66	100

Do productivity changes generated by reallocations contribute to aggregate gains from trade?

Endogenous Productivity Changes and Aggregate Gains From Trade

- Theoretical comparative static experiment: change the degree of firm heterogeneity holding all other structural parameters constant
- Compare a heterogeneous firm model to a homogeneous firm model special case with a degenerate productivity distribution
 - Calibrate to an initial autarky equilibrium or open economy equilibrium with same aggregate statistics
 - Initial welfare is the same in the two models
 - ullet ... But welfare is strictly higher in the heterogeneous firm model for all other values of trade costs \longrightarrow endogenous productivity effect

Endogenous Productivity Changes and Aggregate Gains From Trade

- Theoretical comparative static experiment: change the degree of firm heterogeneity holding all other structural parameters constant
- Compare a heterogeneous firm model to a homogeneous firm model special case with a degenerate productivity distribution
 - Calibrate to an initial autarky equilibrium or open economy equilibrium with same aggregate statistics
 - Initial welfare is the same in the two models
 - ... But welfare is strictly higher in the heterogeneous firm model for all other values of trade costs
 — endogenous productivity effect
- Holds for general productivity distributions under firm heterogeneity

Extra Slides

Evidence on Within-Firm Product Ladders

Correlations Between Local and Global Rankings

Table 1: Spearman Correlations Between Global and Local Rankings

Firms exporting at least:	# products					
to $\#$ countries	1	2	5	10	50	
1	67.93%	67.78%	67.27%	66.26%	59.39%	
2	67.82%	67.74%	67.28%	66.28%	59.39%	
5	67.55%	67.51%	67.2%	66.3%	59.43%	
10	67.02%	67%	66.82%	66.12%	59.46%	
50	61.66%	61.66%	61.64%	61.53%	58.05%	

Global Ranking and Selection Into the Local Ranking

- Changes in the destination markets over time also induce similar pattern of reallocations
- \bullet For all firms exporting to destination d, can measure change in
 - $\log GDP_{d,t}$
 - Total imports into d (in ISIC I) excluding French exports: $\log M_{d,t}^I$
 - Both capture demand shocks for French exporters to d (trade-induced for the case of $\log M_{d,t}^I$)

- Changes in the destination markets over time also induce similar pattern of reallocations
- For all firms exporting to destination d, can measure change in
 - $\log GDP_{d,t}$
 - Total imports into d (in ISIC I) excluding French exports: $\log M_{d,t}^I$
 - Both capture demand shocks for French exporters to d (trade-induced for the case of $\log M'_{d,t}$)
- ... but we can also construct a firm *i*-specific measure of the trade-induced demand shock:
 - $\operatorname{shock}_{i,d,t}^I \equiv \overline{\log M_{d,t}^s} \quad \forall \text{ products } s \in I \text{ exported by firm } i \text{ to } d \text{ in } t_0$

- Changes in the destination markets over time also induce similar pattern of reallocations
- For all firms exporting to destination d, can measure change in
 - $\log GDP_{d,t}$
 - \bullet Total imports into d (in ISIC I) excluding French exports: $\log M_{d,t}^I$
 - Both capture demand shocks for French exporters to d (trade-induced for the case of $\log M_{d,t}^I$)
- ... but we can also construct a firm *i*-specific measure of the trade-induced demand shock:

 $\mathsf{shock}_{i,d,t}^I \equiv \overline{\log M_{d,t}^s} \quad \forall \ \mathsf{products} \ s \in I \ \mathsf{exported} \ \mathsf{by} \ \mathsf{firm} \ i \ \mathsf{to} \ d \ \mathsf{in} \ t_0$

• For all of these demand shocks $X_t = GDP_{d,t}, M_{d,t}^I, M_{d,t}^s$, we compute the first difference as the Davis-Haltiwanger growth rate:

$$\tilde{\Delta}X_t \equiv (X_t - X_{t-1}) / (.5X_t + .5X_{t-1}).$$

 \longrightarrow Shocks in first differences: $\tilde{\Delta} GDP_{d,t}$, $\tilde{\Delta} M_{d,t}^I$, $\overline{\tilde{\Delta} M_{d,t}^s}$

Impact of Trade Shocks on Intensive and Extensive Margins of Firm Export

Dependent Variable	∆log Exports per Product		Δ log # Products Exporte		Exported	
$ ilde{\Delta}$ GDP Shock	0.486 ^a			0.147 ^a		
	(0.046)			(0.016)		
~						
$ ilde{\Delta}$ Trade Shock		0.273 ^a			0.075 ^a	
		(0.009)			(0.004)	
~						
Δ Trade Shock - ISIC			0.038 ^a			0.014^{a}
			(0.005)			(0.002)
Observations	396740	402522	402522	396740	402522	402522

Standard errors in parentheses: c < 0.1, b < 0.05, a < 0.01

Skewness of Product Mix

Dependent Variable	$T_{i,d,t}^I$		$\Delta T_{i,d,t}^{I}$
Specification	FE	FD	FD-FE
GDP Shock	0.076 ^a		
	(0.016)		
Trade Shock	0.047 ^a		
	(0.005)		
Trade Shock - ISIC	0.002 ^a		
	(0.000)		
$ ilde{\Delta}$ GDP Shock		0.067 ^a	0.068 ^a
		(0.012)	(0.016)
$ ilde{\Delta}$ Trade Shock		0.036 ^a	0.032 ^a
		(0.005)	(0.006)
$ ilde{\Delta}$ Trade Shock - ISIC		0.006 ^a	0.004
		(0.002)	(0.003)
Observations	474506	396740	396740
C. 1 1 :	.1 .	o a h	. 0.05 3 . 0.01

Standard errors in parentheses: c < 0.1, b < 0.05, a < 0.01

Aggregating up to Firm Level

Aggregate destination-level trade shock to the firm-level:

$$\mathsf{shock}_{i,t} = \sum_{d} s_{d,t-1} \cdot \mathsf{shock}_{i,d,t} \quad \mathsf{and} \quad \tilde{\Delta} \mathsf{shock}_{i,t} = \sum_{d} s_{d,t-1} \cdot \tilde{\Delta} \mathsf{shock}_{i,d,t}$$

- This aggregation only includes shocks for export market (but not for domestic market)
- Since cannot measure exogenous shocks for domestic market, adjust shock to reflect export intensity (In other words, adjust market shares s_d to reflect sales in domestic market)

 $\mathsf{shock}_{i,t} \times \mathsf{export} \; \mathsf{intensity}_{i,t=0} \quad \mathsf{and} \quad \tilde{\Delta} \mathsf{shock}_{i,t} \times \mathsf{export} \; \mathsf{intensity}_{i,t-1}$

Note: Use t = 0 for levels and t - 1 for first difference

Skewness of Global Product Mix

	T _{it}	Δ	T_{it}	exp. intens _{it}	Δ exp.	intens _{it}
	FE	FD	FD-FE	FE	FD	FD-FE
In GDP shock	0.037 ^a			0.004 ^a		
	(0.003)			(0.001)		
In trade shock	0.018 ^a			0.002 ^b		
	(0.003)			(0.001)		
In trade shock - isic	-0.000			0.001 ^a		
	(0.001)			(0.000)		
Δ GDP shock		0.117 ^a	0.105 ^a		0.032 ^a	0.035 ^a
		(0.031)	(0.038)		(0.010)	(0.012)
Δ trade shock		0.054 ^a	0.048 ^a		0.019^{a}	0.016 ^a
		(0.011)	(0.013)		(0.003)	(0.004)
Δ trade shock - isic		-0.003	-0.009		0.002	0.000
		(0.005)	(0.007)		(0.002)	(0.002)
Observations	118052	118052	118052	110728	107433	107433
Standard errors in pa	rentheses:	c < 0.1. b	o < 0.05. °	³ < 0.01		

27

New Data and Productivity

- Merge trade data with production data (comprehensive annual census)
 - Adds firm level variables (by year) for input and output use
- Measure productivity as deflated value-added per worker

Aside on TFP^Q versus TFP^R :

• Firm/product level:

$$TFP_i^Q = \frac{Y_i/P_i}{L_i}$$
 $TFP_i^R = \frac{Y_i/\tilde{P}_S}{L_i}$

Sector/aggregate level:

$$TFP_S^Q = \frac{Y_S/\tilde{P}_S}{L_S} = \sum_{i \in S} \frac{L_i}{L_S} TFP_i^R$$

Impact of Demand Shocks on Firm Productivity						
Dependent Variable	log prod.	$\Delta \log$	prod.	log prod.	$\Delta \log$	prod.
Specification	FE	FD	FD-FE	FE	FD	FD-FE
log (shock×exp intens)	0.094 ^a			0.073 ^a		
	(0.019)			(0.018)		
$ ilde{\Delta}$ (shock $ imes$ exp intens)		0.134 ^a	0.116^{a}		0.108^{a}	0.096^{a}
		(0.024)	(0.028)		(0.024)	(0.028)
$\log K/L$				0.228 ^a		
				(0.007)		
lar row motorials				0.091 ^a		
log raw materials						
				(0.004)		
$\Delta \log K/L$					0.327 ^a	0.358 ^a
2 108 117 2					(0.008)	(0.009)
					(0.000)	(3.303)
Δ log raw materials					0.100^{a}	0.093^{a}

	(0.024)	(0.028)		(0.024)	(0.028)
log K/L			0.228 ^a (0.007)		
log raw materials			0.091 ^a (0.004)		
$\Delta \log K/L$				0.327 ^a (0.008)	0.358 ^a (0.009)
Δ log raw materials				0.100 ^a (0.004)	0.093 ^a (0.004)

Standard errors in parentheses: c < 0.1, b < 0.05, a < 0.01

Observations

Impact of Demand Shocks on Firm Productivity: Largest French Exporters

Robustness – No Reponse of Investment

In K/L	$\Delta \ln K/L$	$\Delta \ln K/L$
FE	FD	FD-FE
-0.018 (0.018)		
	-0.003 (0.017)	-0.005 (0.020)
212745	186171	186171
	FE -0.018 (0.018)	FE FD -0.018 (0.018) -0.003 (0.017)

Standard errors in parentheses: c < 0.1, b < 0.05, a < 0.01

Robustness – Returns to Scale

Sample	Employment Increase	Employment Decrease
Dependent Variable	$\Delta \log$ productivity	$\Delta \log$ productivity
Specification	FD	FD
$ ilde{\Delta}$ (trade shock $ imes$ export intens.)	0.135 ^a	0.156 ^a
,	(0.035)	(0.045)
Δ log capital stock per worker	0.288 ^a	0.332 ^a
	(0.012)	(0.013)
Δ log raw materials	0.091 ^a	0.097 ^a
-	(0.005)	(0.005)
Observations	69642	65268

Standard errors in parentheses: c < 0.1, b < 0.05, a < 0.01

Robustness – Single Product Firms

Sample	Single Product Firms					
Dependent Variable	log prod.	prod.				
Specification	FE	FD	FD-FE			
\log (trade shock \times export intens.)	0.005					
	(0.050)					
log capital stock per worker	0.269 ^a					
	(0.016)					
log raw materials	0.101^{a}					
	(0.010)					
à (1 1 1 1 1)		0.001	0.1200			
Δ (trade shock $ imes$ export intens.)		-0.021	-0.138 ^c			
		(0.062)	(0.079)			
A low capital stack per worker		0.368 ^a	0.415 ^a			
Δ log capital stock per worker			• · · - •			
		(0.020)	(0.028)			
Δ log raw materials		0.114 ^a	0.090 ^a			
A log law illaterials						
	22272	(0.010)	(0.013)			
Observations	32870	25330	25330			

Robustness – Low/High Export Intensity

	•					
Sample	exp. int	ens. quarti	le # 1	exp. intens. quartile # 4		le # 4
Dependent Variable	log prod.	$\Delta \log$	prod.	log prod.	$\Delta \log$	prod.
Specification	FE	FD	FD-FE	FE	FD	FD-FE
log trade shock	0.009			0.068 ^a		
	(0.006)			(0.014)		
$\log K/L$	0.278 ^a			0.217 ^a		
	(0.022)			(0.015)		
log raw materials	0.070 ^a			0.128 ^a		
	(0.006)			(0.010)		
$ ilde{\Delta}$ trade shock		0.000	0.000		0.0068	0.1003
∆ trade snock		0.000	-0.002		0.096 ^a	0.100 ^a
		(0.007)	(0.009)		(0.017)	(0.021)
$\Delta \log K/L$		0.323 ^a	0.367 ^a		0.325 ^a	0.368 ^a
A log N/L		(0.016)	(0.020)		(0.014)	(0.016)
		(0.010)	(0.020)		(0.014)	(0.010)
Δ log raw materials		0.070 ^a	0.057 ^a		0.129^{a}	0.123 ^a
		(0.006)	(0.006)		(0.008)	(0.010)
		(0.000)	(0.000)		(0.000)	(0.010)
Observations	49227	38894	38894	53125	46347	46347

CounterFactual Bottom Line: Aggregate Effects of Trade Shocks on Productivity

Industry	prod.	trade shock	% high exp.intens.	% mfg. emp.
Wearing Apparel	3.38	5.21	27.36	2.26
Wood	3.37	6.34	20.36	1.7
Tobacco	3.22	43.6	.48	.16
Printing and publishing	2.81	8.48	5.36	3.31
Radio, television and communication	1.8	4.94	59.77	4.31
Leather and footwear	1.79	3.59	26.86	1.21
Textiles	1.69	1.99	33.04	3.29
Motor vehicles, trailers and semi-trailers	1.62	9.8	52.39	7.82
Machinery	1.32	5.54	45.4	9.12
Manufacturing nec	1.19	5.94	22.72	3.56
Pulp and paper	1.18	3.67	30.62	2.82
Chemicals	1.15	6.58	40.55	9.63
Fabricated metal	.94	7.04	17.41	8.81
Medical, precision and optical instruments	.85	5.84	46.82	3.53
Rubber and plastics	.8	5.75	36.97	7.18
Electrical machinery	.73	5.83	53.12	5.17
Basic metals	.7	6.27	58.91	4.06
Food and beverages	.66	6.2	14.12	11.88
Other transport equipment	.65	7.25	69.14	4.3
Office machinery	.64	3.7	42.55	1.09
Other Non-Metallic Mineral	.46	3.89	35.52	3.86
Coke, ref. petr. and nuclear fuel	18	5.12	25.54	.93
Total mfg	1.17	6.2	36.66	100