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Introduction

Motivation:
Larger BVARs tend to forecast better (lower RMSEs,
higher scores) than smaller BVARs

Banbura, et al. (2010), Carriero, et al. (2011), Koop (2012)
Allowing stochastic volatility improves the accuracy of both
point and density forecasts

Clark (2011), D’Agostino, et al. (2012)



Introduction

Problem: Computation becomes too time-consuming with more
than 3-5 variables

Root of challenge is the n(np + 1)× n(np + 1) dimension
of the coefficient variance matrix
No Kroneker structure with conventional stochastic
volatility:

Ω̄−1
Π = Ω−1

Π +
T∑

t=1

(Σ−1
t ⊗ XtX ′t )



Introduction

We develop a BVAR with a single, common stochastic volatility
process that is much faster to estimate

Time-varying volatility driven by single multiplicative factor
Stochastic discount factor model described in Jacquier,
Polson, and Rossi (1995)

Exploits evidence of fairly strong commonality in volatilities
Prior takes a particular form that permits the essential
Kroneker factorization



Introduction

For VARs of different sizes, we compare CPU time, volatility
estimates, model fit, and forecast accuracy (point and density)

Models include:
VAR with constant volatilities
VAR with independent stochastic volatilities

Cogley and Sargent (2005), Primiceri (2005), Clark (2011)

Our proposed model with common stochastic volatility

Our results cover:
4 and 8-variable models for the U.S., with real-time
forecasts
15-variable model for the U.S.
4 and 8-variable models for the U.K.



Introduction

Findings:

CSV much more efficient than independent st. vols.
CSV volatility estimate looks like principal component of
independent volatility estimates
CSV improves the accuracy of real-time point forecasts
and density forecasts

CSV accuracy comparable to independent SV accuracy
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BVAR-CSV specification and implementation

yt = Π0 + Π(L)yt−1 + vt ,

vt = λ0.5
t A−1S1/2εt , εt ∼ N(0, In),

log(λt ) = log(λt−1) + νt , νt ∼ iid N(0, φ)

Identification: first variable’s loading on λt is 1
Diagonal S allows the variances of the variables to differ by
a factor that is constant over time
Choleski structure of A
var(vt ) ≡ Σt ≡ λtA−1SA−1′



BVAR-CSV specification and implementation

Prior distributions:

vec(Π)|A,S ∼ N(vec(µ
Π

),ΩΠ)

ai ∼ N(µa,i ,Ωa,i), i = 2, . . . ,n

si ∼ IG(ds · si ,ds), i = 2, . . . ,n (1)
φ ∼ IG(dφ · φ,dφ)

logλ0 ∼ N(µ
λ
,Ωλ)

To obtain a Kroneker structure, we use a prior for Π
conditional on Ã = S−1/2A:

ΩΠ = (Ã′Ã)−1 ⊗ Ω0 (2)
Ω0 corresponds to the typical Minnesota-style prior
variance



BVAR-CSV specification and implementation

Posterior distributions:
Conditional posteriors with, in most cases, same forms as
priors
Metropolis-Gibbs algorithm
Posterior for VAR coefficients: Define ỹt = λ−0.5

t yt ,
X̃t = λ−0.5

t Xt .

vec(Π)|A,S, φ,Λ, y ∼ N(vec(µ̄Π), Ω̄Π)

µ̄Π =
(

X̃ ′X̃ + Ω−1
0

)−1 (
Ω−1

0 µ
Π

+ X̃ ′ỹ
)

Ω̄Π =
(

Ã′Ã
)−1
⊗
(

Ω−1
0 + X̃ ′X̃

)−1



BVAR-CSV specification and implementation

Treatment of volatility:

ṽt = A(yt − Π0 − Π(L)yt−1)

wt = n−1ṽ ′t S
−1ṽt

Conditional posterior due to Jacquier, et al. (1995):

f (λt |λt−1, λt+1, . . .) ∼ λ−1.5
t exp

(
−wt

2λt

)
exp

(
−(logλt − µt )

2σ2
c

)

Estimation proceeds as in Cogley and Sargent (2005), with
single process using wt instead of n processes using y2

i,t



BVAR-CSV specification and implementation

Prior settings:

Π: prior means = 0; overall shrinkage of 0.2; st. dev’s. from
AR estimates
A: uninformative
Si : mean from ratios of residual standard deviations; 3
degrees of freedom
logλ0: mean from training sample error variances;
variance = 4
φ: mean = 0.035; 3 degrees of freedom



Other models

BVAR-SV:

yt = Π0 + Π(L)yt−1 + vt ,

vt = A−1Λ0.5
t εt , εt ∼ N(0, In), Λt = diag(λ1,t , . . . , λn,t ),

log(λi,t ) = log(λi,t−1) + νi,t , νi,t ∼ N(0, φi), i = 1,n

BVAR:

yt = Π0 + Π(L)yt−1 + vt , vt ∼ N(0,Σ) (3)

Normal-diffuse prior and posterior, as in Kadiyala and
Karlsson (1997)



Data and forecasting design

8 variables: GDP growth, PCE growth, BFI growth, employment
growth, unemployment, GDP inflation, 10-year Treasury yield,
and funds rate

Real-time data series: GDP, PCE, BFI, employment, and
GDP inflation
Final vintage series: unemployment, bond yield and funds
rate

4 variables: GDP growth, unemployment, GDP inflation, and
funds rate



Data and forecasting design

Starting point of the model estimation sample is always
1965:Q1

Forecast horizons: 1Q, 2Q, 1Y, 2Y

Sample of forecasts: 1985-2010:Q4

Actuals in evaluating forecasts: 2nd available estimate in FRB
Philadelphia RTDSM

Romer and Romer (2000), Sims (2002), Croushore (2005),
and Faust and Wright (2009) do the same
Forecasters normally can’t foresee large changes of
annual or benchmark revisions.



Results

Table 2. CPU time requirements
model CPU time

(minutes)
4 variables, independent stochastic volatility 83.6
8 variables, independent stochastic volatility 879.5
4 variables, common stochastic volatility 16.4
8 variables, common stochastic volatility 46.9

models with 4 lags
105,000 draws



Results

Volatility estimates:  indep. vs. common st. vol.
GDP

indep. st. vol.
common st. vol.
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Results

BVAR estimate of common volatility versus principal component from BVAR-SV

common volatility (left scale) principal component (right scale)
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Results

Table 3. Log predictive likelihoods, 1980:Q1-2011:Q2
model log PL
4 variables, constant volatility -656.578
4 variables, independent stochastic volatility -550.363
4 variables, common stochastic volatility -569.269
8 variables, constant volatility -1545.288
8 variables, common stochastic volatility -1464.062



Results

Table 4. Real-Time Forecast RMSEs, 4-variable BVARs,
1985:Q1-2010:Q4

(RMSE ratios relative to const. vol. BVAR)
h = 1Q h = 2Q h = 1Y h = 2Y

BVAR with independent stochastic volatilities
GDP growth 0.908 *** 0.908 *** 0.899 ** 1.005
Unemployment 0.948 *** 0.932 ** 0.929 * 0.975
GDP inflation 0.939 *** 0.913 *** 0.838 *** 0.791 ***
Fed funds rate 0.905 *** 0.936 * 0.953 0.945 *
BVAR with common stochastic volatility
GDP growth 0.881 *** 0.881 *** 0.867 ** 1.036
Unemployment 0.877 *** 0.868 ** 0.882 * 0.960
GDP inflation 0.930 *** 0.875 *** 0.778 *** 0.725 ***
Fed funds rate 0.984 0.987 0.957 0.926 **

Allowing independent stochastic volatilities lowers RMSEs
Making volatility common lowers RMSEs a bit more



Results

Table 5. Real-Time Forecast RMSEs, 8-variable BVARs,
1985:Q1-2010:Q4

(RMSE ratios relative to const. vol. BVAR)
h = 1Q h = 2Q h = 1Y h = 2Y

BVAR with common stochastic volatility
GDP growth 0.960 * 0.940 ** 0.931 * 1.028
Consumption 0.964 ** 0.971 * 0.942 * 1.038
BFI 0.991 0.993 1.000 1.013
Employment 0.867 *** 0.870 *** 0.872 ** 0.957
Unemployment 0.931 ** 0.921 * 0.923 * 0.968
GDP inflation 0.956 *** 0.904 *** 0.831 *** 0.766 ***
Treasury yield 0.991 1.032 1.031 0.979
Fed funds rate 1.002 1.028 0.993 0.960

Larger BVAR more accurate than smaller (not shown)
Adding common volatility lowers RMSEs



Results
Table 6. Average log predictive scores, 4-variable BVARs,

1985:Q1-2010:Q4
(differences in scores vs. benchmark BVAR)

h = 1Q h = 2Q h = 1Y h = 2Y
BVAR with independent stochastic volatilities
All variables 0.810 *** 0.690 ** 0.633 -0.166
GDP growth 0.149 *** 0.080 -0.062 -0.180
Unemployment 0.187 *** 0.147 -0.098 -0.639
GDP inflation 0.089 *** 0.109 *** 0.186 *** 0.196 ***
Fed funds rate 0.504 *** 0.261 ** 0.010 -0.101
BVAR with common stochastic volatility
All variables 0.678 *** 0.739 *** 0.704 ** 0.165
GDP growth 0.196 *** 0.132 * -0.070 -0.173
Unemployment 0.230 *** 0.207 ** 0.076 -0.314
GDP inflation 0.090 *** 0.124 *** 0.222 *** 0.266 ***
Fed funds rate 0.267 *** 0.191 *** 0.088 0.000

Allowing independent st. vol. improves scores
Making volatility common raises scores a bit more



Results
Table 7. Average log predictive scores, 8-variable BVARs,

1985:Q1-2010:Q4
(differences in scores vs. benchmark BVAR)

h = 1Q h = 2Q h = 1Y h = 2Y
BVAR with common stochastic volatility
All variables 0.449 *** 0.368 ** -0.072 -0.590
GDP growth 0.100 ** 0.074 -0.120 -0.118
Consumption 0.025 0.012 -0.035 -0.142
BFI 0.029 -0.034 -0.137 -0.190
Employment 0.162 *** 0.111 ** 0.104 -0.107
Unemployment 0.115 *** 0.056 -0.111 -0.272
GDP inflation 0.032 * 0.064 *** 0.113 *** 0.158 ***
Treasury yield 0.044 *** -0.006 -0.017 -0.022
Fed funds rate 0.113 *** 0.067 *** 0.018 -0.014

Larger BVAR more accurate than smaller (not shown)
Adding common volatility improves scores at shorter
horizons



Conclusions

We develop a BVAR with a single, common stochastic volatility
process that can be estimated relatively quickly

Time-varying volatility driven by single multiplicative factor
Prior takes a particular form that permits the essential
Kroneker factorization

Findings:

CSV much more efficient than independent st. vols.
CSV captures most volatility movement and improves
full-sample model fit
CSV improves the accuracy of real-time point forecasts
and density forecasts

Macro models with 4, 8, and 15 variables, in U.S. and U.K.
data
CSV accuracy comparable to independent SV accuracy
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